[1] XU J, KROO I. Aircraft design with maneuver and gust load alleviation:AIAA-2011-3180[R]. Reston:AIAA, 2011.
[2] XU J, KROO I. Aircraft design with active load alleviation and natural laminar flow[J]. Journal of Aircraft, 2014, 51(5):1532-1545.
[3] 朱阳贞, 吴志刚, 杨超. 弹性飞机纵向机动响应与载荷控制[J]. 飞机工程, 2010(4):40-44. ZHU Y Z, WU Z G, YANG C. Longitudinal maneuver response and loads control of aeroelastic airplanes[J]. Aircraft Engineering, 2010(4):40-44 (in Chinese).
[4] 吴森堂, 费玉华. 飞行控制系统[M]. 北京:北京航空航天大学出版社, 2005:346-350. WU S T, FEI Y H. Flight control system[M]. Beijing:Beihang University Press, 2005:346-350 (in Chinese).
[5] MCKENZIE J R. B-52 control configured vehicles ride control analysis and flight test:AIAA-1973-782[R]. Reston:AIAA, 1973.
[6] DISNEY T E. C-5A active load alleviation system[J]. Journal of Spacecraft, 1977, 14(2):81-86.
[7] HARGROVE W J. The C-5A active lift distribution control system:NASA-TM-X3409[R]. Washington, D.C.:NASA, 1976.
[8] Boeing Commercial Airplane Company. Integrated application of active controls technology to an advanced subsonic transport project-initial act configuration design study:NASA-CR-159249[R]. Washington, D.C.:NASA, 1980.
[9] 徐军, 陈微, 王荣梅, 等. 平飞时飞机机动载荷控制系统的分析和设计[J]. 飞行力学, 2009, 27(5):25-28. XU J, CHEN W, WANG R M, et al. Analysis and design of maneuvering load control system during aircraft level flight[J]. Flight Dynamics, 2009, 27(5):25-28 (in Chinese).
[10] 王星亮, 孙富春, 张友安. 基于模糊逻辑的弹性飞机机动载荷主动控制[J]. 计算机工程与设计, 2012, 33(1):336-340. WANG X L, SUN F C, ZHANG Y A. Active maneuver load control of flexible aircraft based on fuzzy logic[J]. Computer Engineering and Design, 2012, 33(1):336-340 (in Chinese).
[11] WOODS-VEDELER J A, POTOTZKY A S, HOADLEY S T. Rolling maneuver load alleviation using active controls[J]. Journal of Aircraft, 1995, 32(1):68-76.
[12] MILLER G D. Active flexible wing(AFW) technology:AFWAL-TR-87-3096[R]. Los Angeles:Air Force, 1988.
[13] THORNTON S V. Reduction of structural loads using maneuver load control on the advanced fighter technology integration(AFTI)/F-111 mission adaptive wing:NASA-TM-4526[R]. Washington, D.C.:NASA, 1993.
[14] 唐皓, 赵永辉, 黄锐. 刚弹耦合飞行器的机动载荷减缓[J]. 航空计算技术, 2012, 42(3):33-37. TANG H, ZHAO Y H, HUANG R. Maneuver loads alleviation for an aircraft considering rigid-elastic coupling effect[J]. Aeronautical Computing Technique, 2012, 42(3):33-37 (in Chinese).
[15] 宋磊, 孙富春, 张友安, 等. 基于控制分配的飞翼式飞机机动载荷控制研究[J]. 系统仿真学报, 2010, 22(7):1777-1781. SONG L, SUN F C, ZHANG Y A, et al. Research on maneuver load control used to fly-wing aircrafts based on control allocation[J]. Journal of System Simulation, 2010, 22(7):1777-1781 (in Chinese).
[16] ZINK P S, MAVRIS D N, RAVEH D E. Maneuver trim optimization techniques for active aeroelastic wings[J]. Journal of Aircraft, 2001, 38(6):1139-1146.
[17] RAVEH D E. Maneuver load analysis of overdetermined trim system[J]. Journal of Aircraft, 2008, 45(1):119-129.
[18] 肖志鹏, 万志强, 杨超. 三翼面飞机前翼和平尾机动载荷优化配置[J]. 航空学报, 2009, 30(2):276-282. XIAO Z P, WAN Z Q, YANG C. Maneuver load optimal distribution between canard and horizontal tail of three-surface aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(2):276-282 (in Chinese).
[19] 赵永辉. 气动弹性力学与控制[M]. 北京:科学出版社, 2007:263-266. ZHAO Y H. Aeroelasticity and control[M]. Beijing:Science Press, 2007:263-266 (in Chinese).
[20] RODDEN W P. 气动弹性力学理论与计算[M]. 万志强, 吴志刚, 谢长川, 等译. 北京:航空工业出版社, 2014:200-206. RODDEN W P. Theoretical computational aeroelasticity[M]. WAN Z Q, WU Z G, XIE C C, et al translated. Beijing:Aviation Industry Press, 2014:200-206 (in Chinese).
[21] STEVENS B L, LEWIS F L. Aircraft control and simulation[M]. 2nd ed. New Jersey:Wiley & Sons, Inc, 2003:316-320.
[22] 孟泽, 孙合敏, 董礼. 线性调频信号仿真及其特性分析[J]. 舰船电子工程, 2009, 29(8):114-117. MENG Z, SUN H M, DONG L. Characteristic analysis and simulation of LFM signal[J]. Ship Electronic Engineering, 2009, 29(8):114-117 (in Chinese). |