[1] DONKELAAR A, MARTIN R, BRAUER M, et al. Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth:Development and application[J]. Environmental Health Perspectives, 2010, 118(6):847-855.
[2] BRUN K, NORED M, KURZ R. Particle transport analysis of sand ingestion in gas turbine engines[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(1):012402.
[3] DUNN M G, PADOVA J, MOLLER J E, et al. Performance deterioration of a turbofan and a turbojet engine upon exposure to a dust environment[J]. Journal of Engineering for Gas Turbines and Power, 1987, 109(3):336-343.
[4] KIM J, DUNN M G, BARAN A J, et al. Deposition of volcanic materials in the hot sections of two gas turbine engines[J]. Journal of Engineering for Gas Turbines and Power, 1993, 115(3):641-651.
[5] SCHNEIDER O, DOHMEN H J, BENRA F K, et al. Investigations of dust separation in the internal cooling air system of gas turbines:GT-2003-38293[R]. New York:ASME, 2003.
[6] EKKAD S, HAN J C. Detailed heat transfer distributions on a cylindrical model with simulated TBC spallation:AIAA-1997-1595[R]. Reston:AIAA, 1997.
[7] DAVID G, KAREN A. Simulating particle deposition and mitigating deposition degradation effects in film cooled turbine sections:DE-FC21-92MC29061[R]. Washington, D.C.:UTSR, 2010.
[8] WRIGHT I G, LEVENS C, PINT B A. An analysis of the potential for deposition, erosion, or corrosion in gas turbines fueled by the products of biomass gasification or combustion:GT-2000-0019[R]. New York:ASME, 2000.
[9] AHLUWALIA R K, IM K H, WENGLARZ R A. Flyash adhesion in simulated coal-fired gas turbine environment[J]. Journal of Engineering for Gas Turbines and Power, 1989, 111(4):672-678.
[10] CROSBY J M, LEWIS S, BONS J P, et al. Effects of temperature and particle size on deposition in land based turbines[J]. Journal of Engineering for Gas Turbines and Power, 2008, 130(5):819-825.
[11] 王德全, 夏智勋, 胡建新, 等. 固冲发动机沉积数值模拟与试验研究[J]. 固体火箭技术, 2009, 32(1):38-42. WANG D Q, XIA Z X, HU J X, et al. Numerical simulation and experimental study of deposition for ducted rockets[J]. Journal of Solid Rocket Technology, 2009, 32(1):38-42 (in Chinese).
[12] 张大林, 陈维建. 飞机机翼表面霜状冰结冰过程的数值模拟[J]. 航空动力学报, 2004, 19(1):138-141. ZHANG D L, CHEN W J. Numerical simulation of the rime ice accretion process on airfoil[J]. Journal of Aerospace Power, 2004, 19(1):138-141 (in Chinese).
[13] 陈维建, 张大林. 飞机机翼结冰过程的数值模拟[J]. 航空动力学报, 2005, 20(6):1010-1017. CHEN W J, ZHANG D L. Numerical simulation of ice accretion on airfoils[J]. Journal of Aerospace Power, 2005, 20(6):1010-1017 (in Chinese).
[14] 孙志国, 朱程香, 付斌, 等. 结冰计算中翼面网格重构研究[J]. 航空学报, 2011, 32(2):231-241. SUN Z G, ZHU C X, FU B,et al. Research of grid reconstruction on wing surface for icing calculation[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(2):231-241 (in Chinese).
[15] TAFTI D K, SREEDHARAN S S. Composition dependent model for the prediction of syngas ash deposition with the application to a leading edge turbine vane, GT-20110-23655[C]//ASME Turbo Expo 2010:Power for Land, Sea, and Air. New York:ASME, 2010:615-626.
[16] SENIOR C J, SRINIVASACHAR S. Viscosity of ash particles in combustion systems for prediction of particle sticking[J]. Energy and Fuels, 1995, 9(2):277-283.
[17] N'DALA I, CAMBIER F, ANSEAU M R, et al. Viscosity of liquid feldspars. Part I:Viscosity measurements[J]. Transactions & Journal of the British Ceramic Society, 1984, 83(4):105-107.
[18] SHIH T I P, BAILEY R T. GRID2D/3-A computer program for generating grid systems in complex-shaped two-and three-dimensional spatial domains:NASA-TM-102453[R]. Washington, D.C.:NASA,1990.
[19] Allegheny Ludlum Corporation Company. Stainless steel types 309 and types 310[S]. Pittsburgh, PA:Allegheny Lulum Corporation Company, 2002.
[20] WEBB J B, CASSADAY B. Coal ash deposition on nozzle guide vanes:Part Ⅱ-Computational modeling[J]. Journal of Turbomachinery, 2011, 135(1):1757-1767. |