[1] LEE K, AALBURG C, DIEZ F J, et al. Primary breakup of turbulent round liquid jets in uniform crossflows[J]. AIAA Journal, 2007, 45(8): 1907-1916.
[2] SALLAM K A, AALBURG C, FAETH G M. Breakup of round nonturbulent liquid jets in gaseous crossflow[J]. AIAA Journal, 2004, 42(12): 2529-2540.
[3] BIROUK M, NYANTEKYI-KWAKYE B, POPPLE-WELL N. Effect of nozzle geometry on breakup length and trajectory of liquid jet in subsonic crossflow[J]. Atomization and Sprays, 2011, 21(10): 847-865.
[4] WU P, KIRKENDALL K A, FULLER R P. Breakup process of liquid jets in subsonic crossflows[J]. Journal of Propulsion and Power, 1997, 13(1): 64-73.
[5] STENZLER J N, LEE J G, SANTAVICCA D A. Penetration of liquid jets in cross-flow[J]. Atomization and Sprays, 2006, 16(8): 887-906.
[6] GUTMARK E J, IBRAHIM I M, MURUGAPPAN S. Circular and noncircular subsonic jets in cross flow[J]. Physics of Fluids, 2008, 20(7): 075110.
[7] SHAPIRO S R, KING J M, CLOSKEY R T M. Optimization of controlled jets in crossflow[J]. AIAA Journal, 2006, 44(6): 1292-1298.
[8] MEGERIAN S, DAVITIAN J, ALVES L S B. Transverse-jet shear-layer instabilities. Part 1. Experimental studies[J]. Journal of Fluid Mechanics, 2007, 593: 93-129.
[9] COLETTI F, ELKINS C J, EATON J K. An inclined jet in crossflow under the effect of streamwise pressure gradients[J]. Experiments in Fluids, 2013, 54: 1589.
[10] HERRMANN M. Detailed numerical simulations of the primary atomization of a turbulent liquid jet in crossflow[J]. Journal of Engineering for Gas Turbine and Power, 2010, 132(6): 061506.
[11] HERRMANN M. The influence of density ratio on the primary atomization of a turbulent liquid jet in crossflow [J]. Proceedings of Combustion Institute, 2011, 33(2): 2079-2088.
[12] CAVAR D, MEYER K E. LES of turbulent jet in cross flow: Part 2. POD analysis and identification of coherent structures[J]. International Journal of Heat and Fluid Flow, 2012, 36: 35-46.
[13] GALEAZZO F C C, DONNERT G, CARDENAS C, et al. Computational modeling of turbulent mixing in a jet in crossflow[J]. International Journal of Heat and Fluid Flow, 2013, 41: 55-65.
[14] SAU R, MAHESH K. Optimization of pulsed jets in crossflow[J]. Journal of Fluid Mechanics, 2010, 653: 365-390.
[15] PAI M G, DESJARDINS O, PITSCH H. Detailed simulations of primary breakup of turbulent liquid jets in crossflow[R]. Stanford, CA: Center for Turbulence Research, 2008: 451-466.
[16] MULDOON F, ACHARYA S. Direct numerical simulation of pulsed jets in crossflow[J]. Computers & Fluids, 2010, 39(10): 1745-1773.
[17] MARGASON R J. Fifty years of jet in crossflow research: AGARD CP [R]. Paris: AGARD, 1993, 534: 1-41.
[18] AALBURG C, VAN LEER B, FAETH G M, et al. Properties of nonturbulent round liquid jets in uniform gaseous cross flows[J]. Atomization and Sprays, 2005, 15(3): 271-294.
[19] MAHESH K. The interaction of jets with crossflow[J]. Annual Review of Fluid Mechanics, 2013, 45: 379-407.
[20] WONG D C Y, SIMMONS M J H, DECENT S P, et al. Break-up dynamics and drop size distributions created from spiraling liquid jets[J]. International Journal of Multiphase Flow, 2004, 30: 499-520.
[21] CLASEN C, EGGERS J, FONTELOS M A, et al. The beads-on-string structure of viscoelastic threads[J]. Journal of Fluid Mechanics, 2006, 556: 283-308.
[22] YARIN A L. Free liquid jets and films: Hydrodynamics and rheology[M]. New York: Wiley, 1993.
[23] HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39: 201-225.
[24] RIDER W J, KOTHE D B. Reconstructing volume tracking[J]. Journal of Computational Physics, 1998, 141: 112-152.
[25] KORNEV N, HASSEL E. Synthesis of homogeneous anisotropic divergence free turbulent fields with prescribed second-order statistics by vortex dipoles[J]. Physics of Fluids, 2007, 19(6): 068101.
[26] RIDER W J, KOTHE D B. Reconstructing volume tracking[J]. Journal of Computational Physics, 1998, 141: 112-152.
[27] GOMAA H, KUMAR S, HUBER C, et al. Numerical comparison of 3D jet breakup using a compression scheme and an interface reconstruction based VOF-code[C]//24th ILASS-Europe, 2011.
[28] MOTZIGEMBA M, ROTH N, BOTHE D, et al. The effect of non-Newtonian flow behavior on binary droplet collisions: VOF-simulation and experimental analysis[C]//Proceedings of ILASS-Europe, 2002.
[29] FOCKE C, BOTHE D. Computational analysis of binary collisions of shear thinning droplets[J]. Journal of Non-Newtonian Fluid Mechanics, 2011, 166: 799-810.
[30] ZHU C, ERTL M, WEIGAND B. Numerical investigation on the primary breakup of an inelastic non-Newtonian liquid jet with inflow turbulence [J]. Physics of Fluids, 2013, 25(8): 083102.
[31] SCHROEDER J, LEDERER M L, GAUKEL V, et al. Effect of atomizer geometry and rheological properties on effervescent atomization of aqueous polyvinylphrrolidone solution[C]//24th ILASS-Europe, 2011.
[32] YOU Y, LUEDEKE H, HANNEMANN K. On the flow physics of a low momentum flux ratio jet in a supersonic turbulent crossflow[J]. Europhysics Letters, 2012, 97(2): 24001.
[33] BATCHELOR G K. The theory of homogeneous turbulence[M]. Cambridge: Cambridge University Press, 1953.
[34] MUNSON B R, YOUNG D F, OKIISHI T H. Fundamentals of fluid mechanics [M]. New York: John Wiley & Sons, 2006. |