[1] NEGRI M, CIEZKI H K. Atomization of non-Newtonian flu-ids with an impinging jet injector:Influence of viscoelasticity on hindering droplets formation:AIAA-2010-6821[R]. Reston:AIAA, 2010. [2] YANG L J, DU M L, FU Q F, et al. Linear stability analysis of a power-law liquid jet[J]. Atomization and Sprays, 2012, 22(2):123-141. [3] YANG L J, DU M L, FU Q F, et al. Temporal instability of a power-law planar liquid sheet[J]. Journal of Propulsion and Power, 2014, 31(1):286-293. [4] LIU L, YANG L, FU Q, et al. Improved modeling of free power-law liquid sheets by weighted-residual approximations[J]. International Journal of Multiphase Flow, 2018, 107:146-155. [5] YANG L J, LIU Y X, FU Q F, et al. Linear stability analysis of electrified viscoelastic liquid sheets[J]. Atomization and Sprays, 2012, 22(11):951-982. [6] YANG L J, LIU Y X, FU Q F. Linear stability analysis of an electrified viscoelastic liquid jet[J]. Journal of Fluid Engineering, 2012, 134(7):071303. [7] YANG L J, XU B R, FU Q F. Linear instability analysis of planar non-Newtonian liquid sheets in two gas streams of unequal velocities[J]. Journal of Non-Newtonian Fluid Mechanics, 2012, 167-168:50-58. [8] TONG M X, YANG L J, FU Q F, et al. Effect of gas/liquid shearing on the viscoelastic instability of a planar sheet[J]. Journal of Fluids Engineering, 2017, 139(4):044502. [9] YANG L J, TONG M X, FU Q F. Linear stability analysis of a three-dimensional viscoelastic liquid jet surrounded by a swirling air stream[J]. Journal of Non-Newtonian Fluid Mechanics, 2013, 191:1-13. [10] TONG M X, YANG L J, FU Q F, et al. Effect of gas-liquid axial velocity continuity on the axisymmetric and asymmetric instabilities of a viscoelastic liquid core in a swirling gaseous co-flow[J]. Atomization and Sprays, 2016, 26(1):1-21. [11] YANG L J, TONG M X, FU Q F. Instability of viscoelastic annular liquid sheets subjected to unrelaxed axial elastic tension[J]. Journal of Non-Newtonian Fluid Mechanics, 2013, 198:31-38. [12] TONG M X, FU Q F, YANG L J. Two-dimensional instability response of an electrified viscoelastic planar liquid sheet subjected to unrelaxed axial elastic tension[J]. Atomization and Sprays, 2015, 25(2):99-121. [13] XIE L, JIA B Q, CUI X, et al. Effects of spatially decaying elastic tension on the instability of viscoelastic jets[J]. Physics of Fluids, 2019, 31(12):123107. [14] TONG M X, YANG L J, FU Q F. Thermocapillar instability of a two-dimensional viscoelastic planar liquid sheet in surrounding gas[J]. Physics of Fluids, 2014, 26(3):033105. [15] FU Q F, DENG X D, YANG L J. Kelvin-Helmholtz instability of confined Oldroyd-B liquid film with heat and mass transfer[J]. Journal of Non-Newtonian Fluid Mechanics, 2019, 267:28-34. [16] JIA B Q, XIE L, YANG L J, et al. Linear instability of viscoelastic planar liquid sheets in the presence of gas velocity oscillations[J]. Journal of Non-Newtonian Fluid Mechanics, 2019, 273:104169. [17] WANG C, YANG L J, XIE L, et al. Weakly nonlinear instability of planar viscoelastic sheets[J]. Physics of Fluids, 2015, 27(1):013103. [18] XIE L, YANG L J, FU Q F, et al. Effects of unrelaxed stress tension on the weakly nonlinear instability of viscoelastic sheets[J]. Physics of Fluids, 2016, 28(10):104104. [19] XIE L, YANG L J, WANG J J, et al. Weakly nonlinear instability of viscoelastic planar sheets with initial varicose disturbances[J]. Aerospace Science and Technology, 2018, 79:373-382. [20] THOMPSON J C, ROTHSTEIN J P. The atomization of viscoelastic fluids in flat-fan and hollow-cone spray nozzles[J]. Journal of Non-Newtonian Fluid Mechanics, 2007, 147(1-2):11-22. [21] YANG L J, FU Q F, ZHANG W, et al. Atomization of gelled propellants from swirl injectors with leaf spring in swirl chamber[J]. Atomization and Sprays, 2011, 21(11):949-969. [22] YANG L J, FU Q F, QU Y Y, et al. Spray characteristics of gelled propellants in swirl injectors[J]. Fuel, 2012, 97:253-261. [23] FU Q F, CUI K D. Spray of power-law fluid from a swirl injector with nontangential inlet channels[J]. Atomization and Sprays, 2014, 24(9):827-840. [24] FU Q F, GE F, WANG W D, et al. Spray characteristics of gel propellants in an open-end swirl injector[J]. Fuel, 2019, 254:115555. [25] RADWAL M B, NATAN B, MISHRA DP. Gel propellants[J].Progress in Energy and Combustion Science, 2021, 83:100885. [26] MA Y C, BAI F Q, CHANG Q, et al. An experimental study on the atomization characteristics of impinging jets of power law fluid[J]. Journal of Non-Newtonian Fluid Mechanics, 2015, 217:49-57. [27] JAMES M, KUBAL T, SON S, et al. Calibration of an impinging jet injector suitable for liquid and gelled hypergolic propellants:AIAA-2009-4882[R]. Reston:AIAA, 2009. [28] VON KAMPEN J, MADLENER K, CIEZKI H. Characteristic flow and spray properties of gelled fuels with regard to the impinging jet injector type:AIAA-2006-4573[R]. Reston:AIAA, 2006. [29] YANG L J, FU Q F, QU Y Y, et al. Breakup of a power-law liquid sheet formed by an impinging jet injector[J]. International Journal of Multiphase Flow, 2012, 39:37-44. [30] FU Q F, YANG L J, CUI K D, et al. Effects of orifice geometry on gelled propellants sprayed from impinging-jet injectors[J]. Journal of Propulsion and Power, 2014, 30(4):1113-1117. [31] ZHAO F, YANG L J, FU Q F, et al. Oblique collision of two power-law fluid jets at low speed[J]. Journal of Propulsion and Power, 2015, 31(6):1653-1660. [32] ZHAO F, QIN L Z, FU Q F, et al. Spray characteristics of elliptical power-law fluid-impinging jets[J]. Journal of Fluid Engineering, 2017, 139(7):071203. [33] CIEZKI H, ROBERS A, SCHNEIDER G. Investigation of the spray behavior of gelled jet-A1 fuels using an air blast and an impinging jet atomizer:AIAA-2002-3601[R]. Reston:AIAA, 2002. [34] ZHAO H, LIU H F, XU J L, et al. Breakup and atomization of a round coal water slurry jet by an annular air jet[J]. Chemical Engineering Science, 2012, 78:63-74. [35] GECKLER S C, SOJKA P E. Effervescent atomization of viscoelastic liquids:experiment and modeling[J]. Journal of Fluid Engineering, 2008, 130(6):061303. [36] MANSOUR A, CHIGIER N. Air-blast atomization of non-Newtonian liquids[J]. Journal of Non-Newtonian Fluid Mechanics, 1995, 58(2-3):161-194. [37] HERMOSÍN-REYES M, GAÑÁN-CALVO A M, MODESTO-LóPEZ L B. Flow blurring atomization of Poly(ethylene oxide) solutions below the coil overlap concentration[J]. Journal of Aerosol Science, 2019, 137:105429. [38] CSIZMADIA P, TILL S, HÖS C. An experimental study on the jet breakup of Bingham plastic slurries in air[J]. Experimental Thermal and Fluid Science, 2019, 102:271-278. [39] JEJURKAR S Y, YADAV G, MISHRA D P. Visualizations of sheet breakup of non-Newtonian gels loaded with nanoparticles[J]. International Journal of Multiphase Flow, 2018, 100:57-76. [40] NEGRI M, CIEZKI H K. Effect of elasticity of Boger fluids on the atomization behavior of an impinging jet injector[J]. Atomization and Sprays, 2015, 25(8):695-714. [41] DINIC J, SHARMA V. Macromolecular relaxation, strain, and extensibility determine elastocapillary thinning and extensional viscosity of polymer solutions[J]. Proceedings of the National Academy of Science of the United States of America, 2019, 116(18):8766-8774. [42] MUN R P, BYARS J A, BOGER D V. The effects of polymer concentration and molecular weight on the breakup of laminar capillary jets[J]. Journal of Non-Newtonian Fluid Mechanics, 1998, 74(1-3):285-297. [43] MCCABE J, COIL M. A graphical spray analysis method for gel spray characterization:AIAA-2010-6823[R]. Reston:AIAA, 2010. [44] THEOFANOUS T G, MITKIN V V, NG C L. The physics of aerobreakup. III. Viscoelastic liquids[J]. Physics of Fluids, 2013, 25(3):032101. [45] HSIANG L P, FAETH G M. Drop deformation and breakup due to shock wave and steady disturbances[J]. International Journal of Multiphase Flow, 1995, 21(4):545-560. [46] QIAN L J, ZHONG X K, ZHU C L, et al. An experimental investigation on the secondary breakup of carboxymethyl cellulose droplets[J]. International Journal of Multiphase Flow, 2021, 136:103526. [47] ZHAO H, LIU H F, LI W F, et al. Morphological classification of low viscosity drop bag breakup in a continuous air jet stream[J]. Physics of Fluids, 2010, 22(11):114103. [48] KULKARNI V, SOJKA P E. Bag breakup of low viscosity drops in the presence of a continuous air jet[J]. Physics of Fluids, 2014, 26(7):072103. [49] ZHAO H, LIU H F, XU J L, et al. Temporal properties of secondary drop breakup in the bag-stamen breakup regime[J]. Physics of Fluids, 2013, 25(5):054102. [50] DAI Z, FAETH G M. Temporal properties of secondary drop breakup in the multimode breakup regime[J]. International Journal of Multiphase Flow, 2001, 27(2):217-236. [51] WILCOX J D, JUNE R K, BROWN H A, et al. The retardation of drop breakup in high-velocity airstreams by polymeric modifiers[J]. Journal of Applied Polymer Science, 1961, 5(13):1-6. [52] MATTA J E, TYTUS R P. Viscoelastic breakup in a high velocity airstream[J]. Journal of Applied Polymer Science, 1982, 27(2):397-405. [53] ARCOUMANIS C, KHEZZAR L, WHITELAW D S, et al. Breakup of Newtonian and non-Newtonian fluids in air jets[J]. Experiments in Fluids, 1994, 17(6):405-414. [54] ARCOUMANIS C, WHITELAW D S, WHITELAW J H. Breakup pf droplets of Newtonian and non-Newtonian fluids[J]. Atomization and Sprays, 1996, 6:245-256. [55] SHRAIBER A A, PODVYSOTSKY A M, DUBROVSKY V V. Deformation and breakup of drops by aerodynamic forces[J]. Atomization and Sprays, 1996, 6(6):667-692. [56] LEE C H, REITZ R D. An experimental study of the effect of gas density on the distortion and breakup mechanism of drops in high speed gas stream[J]. International Journal of Multiphase Flow, 2000, 26(2):229-244. [57] LIU Z, REITZ R D. An analysis of the distortion and breakup mechanisms of high speed liquid drops[J]. International Journal of Multiphase Flow, 1997, 23(4):631-650. [58] DINH N, LI G J, THEOFANOUS T. An investigation of droplet breakup in a high Mach, low weber number regime[C]//41 st Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2003:317. [59] SNYDER S, SOJKA P E. Secondary atomization of elastic non-Newtonian drops[C]//24th European Conference on Liquid Atomization and Spray Systems, 2011. [60] SNYDER S, SOJKA P E. Spatially resolved characteristics and analytical modeling of elastic non-Newtonian secondary breakup[C]//12nd Triennial International Conference on Liquid Atomization and Spray Systems, 2012. [61] SNYDER S, AROCKIAM N, SOJKA P. Secondary atomization of elastic non-Newtonian liquid drops:AIAA-2010-6822[R]. Reston:AIAA, 2010. [62] SNYDER S, AROCKIAM N, SOJKA P. Secondary atomization of elastic non-Newtonian liquid drops[C]//46th AIAA/ASME/ASEE Joint Propulsion Conference & Exhibit. Reston:AIAA, 2010:6822. [63] LOPZE R C. Secondary breakup of inelastic non-Newtonian liquid drops[D]. West Lafayette:Purdue University, 2010. [64] LOPZE R C, SOJKA P E. Secondary breakup of non-Newtonian liquid drops[C]//11th Triennial International Annual Conference on Liquid Atomization and Spray Systems, 2009. [65] ROCHA J. Secondary atomization of inelastic non-Newtonian liquid drops in the bag and multimode regimes[D]. West Lafayette:Purdue University, 2016. [66] 邓寒玉, 封锋, 武晓松, 等. 基于扩展TAB模型的凝胶液滴二次雾化特性研究[J]. 推进技术, 2015, 36(11):1734-1740. DENG H Y, FENG F, WU X S, et al. Characteristics of second atomization for gelled droplet based on extended TAB model[J]. Journal of Propulsion Technology, 2015, 36(11):1734-1740(in Chinese). [67] 邓寒玉, 封锋, 孔上峰. 横向气流中航空煤油凝胶液滴二次雾化特性实验研究[J]. 推进技术, 2017, 38(12):2658-2666. DENG H Y, FENG F, KONG S F. Experimental study on characteristics of secondary atomization for gelled kerosene droplet in air crossflow[J]. Journal of Propulsion Technology, 2017, 38(12):2658-2666(in Chinese). [68] 邓寒玉. 航空煤油凝胶的撞击雾化及液滴破碎机理研究[D]. 南京:南京理工大学, 2018. DENG H Y. Research on mechanisms of impinging atomization and droplet breakup of gelled kerosene[D]. Nanjing:Nanjing University of Science and Technology, 2018(in Chinese). [69] 孔上峰, 封锋, 邓寒玉. 高韦伯数下煤油液滴的破碎机理研究[J]. 实验流体力学, 2017, 31(1):20-25. KONG S F, FENG F, DENG H Y. Breakup of a kerosene droplet at high Weber numbers[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1):20-25(in Chinese). [70] 孔上峰, 封锋, 邓寒玉. 气流中煤油凝胶液滴变形破碎过程的试验[J]. 推进技术, 2017, 38(12):2857-2864. KONG S F, FENG F, DENG H Y. Experiment on breakup of a gelled kerosene droplet in air jet flow[J]. Journal of Propulsion Technology, 2017, 38(12):2857-2864(in Chinese). [71] 孔上峰. 煤油凝胶二次雾化特性研究[D]. 南京:南京理工大学, 2017. KONG S F. Research on the secondary atomization characteristics of gelled kerosene droplet[D]. Nanjing:Nanjing University of Science and Technology, 2017(in Chinese). [72] ZHAO H, LIU H F, XU J L, et al. Secondary breakup of coal water slurry drops[J]. Physics of Fluids, 2011, 23(11):113101. [73] 赵辉. 同轴气流式雾化机理研究[D]. 上海:华东理工大学, 2012. ZHAO H. Study on the mechanism of coaxial air-blast atomization[D]. Shanghai:East China University of Science and Technology, 2012(in Chinese). [74] BAKER T, NEGRI M, BERTOLA V. Atomization of high-viscosity and non-Newtonian fluids by premixing[J]. Atomization and Spray 2018, 28(5):403-416. [75] 宋少波. 非牛顿流体液滴形变破碎实验研究与数值仿真[D]. 杭州:中国计量大学, 2019. SONG S B. Experimental investigation and numerical simulation on deformation and breakup of non-Newtonian fluid droplet[D]. Hangzhou:China University of Metrology, 2019(in Chinese). [76] 曹钦柳, 封锋, 邓寒玉. 煤油凝胶液滴破碎时空特性实验研究[J]. 含能材料, 2017, 25(4):342-347. CAO Q L, FENG F, DENG H Y. Temporal and spatial characteristics of gelled kerosene droplet breakup[J]. Chinese Journal of Energetic Materials, 2017, 25(4):342-347(in Chinese). [77] DOMBROWSKI N, JOHNS W R. The aerodynamic instability and disintegration of viscous liquid sheets[J]. Chemical Engineering Science, 1963, 18(3):203-214. [78] SENECAL P K, SCHMIDT D P, NOUAR I, et al. Modeling high-speed viscous liquid sheet atomization[J]. International Journal of Multiphase Flow, 1999, 25(6-7):1073-1097. [79] VARGA C M, LASHERAS J C, HOPFINGER E J. Initial breakup of a small-diameter liquid jet by a high-speed gas stream[J]. Journal of Mechanics, 2003, 497:405-434. [80] RAYNAL L. Instabilite et entrainement a l'interface d'une couche de melange liquide-gaz[D]. Grenoble:University of Joseph Fourier, 1997. [81] ALISEDA A, HOPFINGER E J, LASHERAS J C, et al. Atomization of viscous and non-Newtonian liquids by a coaxial, high-speed gas jet. Experiments and droplet size modeling[J]. International Journal of Multiphase Flow, 2008, 34(2):161-175. [82] RAYANA F B, CARTELLIER A, HOPFINGER E. Assisted atomization of a liquid layer:Investigation of the parameters affecting the mean drop size rediction[C]//6th International Conference on Liquid Atomization and Spray Systems, 2006. [83] MAYER E. Theory of liquid atomization in high velocity gas streams[J]. American Rocket Society Journal, 1961, 31(12):1783-1785. [84] ADELBERG M. Mean drop size resulting from the injection of a liquid jet into a high-speed gas stream[J]. AIAA Journal, 1968, 6(6):1143-1147. [85] 刘陆昊,富庆飞,杨立军. 气液同轴离心喷嘴雾化理论模型[C]//第五届空天动力联合会议, 2020. LIU L H, FU Q F, YANG L J. Atomization model of coaxial swirl injectors[C]//The 5th joint conference of aerospace propulsion, 2020(in Chinese). [86] QIN L Z, YI R, YANG L J. Theoretical breakup model in the planar liquid sheets exposed to high-speed gas and droplet size prediction[J]. International Journal of Multiphase Flow, 2018, 98:158-167. [87] FU Q F, YAO M W, YANG L J, et al. Atomization model of liquid jets exposed to subsonic crossflows[J]. AIAA Journal, 2020, 58(5):2347-2351. [88] LIU L H, YANG L J, FU Q F. Droplet size spatial distribution model of liquid jets injected into subsonic crossflow[J]. International Journal of Aerospace Engineering, 2020(1):1-14. |