航空学报 > 2022, Vol. 43 Issue (1): 625915-625915   doi: 10.7527/S1000-6893.2021.25915

激波/边界层干扰机理与控制专栏

压缩-膨胀湍流边界层平均摩阻分解

段俊亦1,2, 童福林1,3,4, 李新亮1,2, 刘洪伟1   

  1. 1. 中国科学院力学研究所 高温气体动力学国家重点实验室, 北京 100190;
    2. 中国科学院大学 工程科学学院, 北京 100049;
    3. 中国空气动力研究与发展中心 计算空气动力研究所, 绵阳 621000;
    4. 中国空气动力研究与发展中心 空气动力学国家重点实验室, 绵阳 621000
  • 收稿日期:2021-06-07 修回日期:2021-08-04 出版日期:2022-01-15 发布日期:2022-02-14
  • 通讯作者: 刘洪伟 E-mail:hliu@imech.ac.cn
  • 基金资助:
    国家重点研发计划(2019YFA0405300,2016YFA0401200);国家自然科学基金(91852203);国家数值风洞工程;科学挑战专题(TZ2016001);中国科学院战略先导专项(XDC01000000,XDA17030100)

Decomposition of mean friction drag in compression-expansion turbulent boundary layer

DUAN Junyi1,2, TONG Fulin1,3,4, LI Xinliang1,2, LIU Hongwei1   

  1. 1. State Key Laboratory of High-Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;
    2. School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    4. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China
  • Received:2021-06-07 Revised:2021-08-04 Online:2022-01-15 Published:2022-02-14
  • Supported by:
    National Key R&D Program of China (2019YFA0405300, 2016YFA0401200);National Natural Science Foundation of China (91852203);National Numerical Windtunnel Project;Science Challenge Project (TZ2016001);Strategic Priority Research Program of Chinese Academy of Sciences (XDC01000000, XDA17030100)

摘要: 采用直接数值模拟对来流马赫数2.9、24°压缩-膨胀折角构型中激波与湍流边界层干扰问题进行了研究。重点关注膨胀折角法向高度对激波干扰区以及下游平板边界层流动的影响。研究发现,当高度足够大时,激波干扰区内未受下游膨胀波的影响,此时的流动特征与传统的压缩折角干扰构型一致。高度较小时,脱体剪切层的再附过程受到下游膨胀波的加速影响,导致再附点向上游移动,分离泡发生剧烈收缩。对上、下游平板湍流边界层应用了平均摩阻分解技术,比较了湍流边界层在平衡和非平衡状态下的差异。分析发现,膨胀折角区域的高摩阻现象主要与摩阻分解后的Cf1项与Cf3项相关。高度变化对Cf1项影响较小,而对Cf2项影响显著。高度变化体现在:下游平板上Görtler涡结构强度以及层流化现象对Cf2项贡献的差异。

关键词: 激波/湍流边界层干扰, 压缩-膨胀折角构型, 直接数值模拟, 平均摩阻分解, Görtler涡

Abstract: The interaction between the shock wave with Mach number 2.9 and the turbulent boundary layer in the configuration of 24° compression-expansion corners is investigated by using direct numerical simulation. The influence of normal height of the expansion corner on the shock wave interaction region and downstream boundary layer is analyzed. It is found that when the height is large enough, the shock wave interaction region is not affected by the downstream expansion wave, and the characteristics are consistent with those of the traditional compression corner configuration. While the height is small, the reattachment process of the detached shear layer is accelerated by the downstream expansion wave, which causes the reattachment point to move upstream and the separation bubble to shrink dramatically. The decomposition of mean friction drag is applied to the turbulent boundary layer of the upstream and downstream plates, and the difference between the turbulent boundary layer in equilibrium and nonequilibrium state is explored. It is found that the high friction in the expansion corner is mainly related to the Cf1 term and Cf3 term in the decomposition of mean friction drag. The height has little effect on the Cf1 term, while significant effect on the Cf2 term. Height variation is reflected in the contribution of the Görtler vortex and re-laminar phenomenon on the downstream plate to the Cf2 term.

Key words: shock wave/turbulent boundary layer interaction, compression-expansion corner configuration, direct numerical simulation, decomposition of mean friction drag, Görtler vortex

中图分类号: