[1] DOLLING D S. Fifty years of shock-wave/boundary-layer interaction research-What next?[J]. AIAA Journal, 2001, 39:1517-1531. [2] ANDREOPOULOS J, MUCK K. Some new aspects of the shock wave boundary layer interaction in compression ramp flows[C]//24th Aerospace Sciences Meeting. Reston:AIAA, 1986. [3] ERENGIL M E, DOLLING D S. Physical causes of separation shock unsteadiness in shock-wave/boundary layer interactions:AIAA-1993-3134[R]. Reston:AIAA, 1993. [4] BERESH S J, CLEMENS N T, DOLLING D S. Relationship between upstream turbulent boundary-layer velocity fluctuations and separation shock unsteadiness[J]. AIAA Journal, 2002, 40(12):2412-2422. [5] CLEMENS N T, NARAYANASWAMY V. Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions[J]. Annual Review of Fluid Mechanics, 2014, 46(1):469-492. [6] PIROZZOLI S, GRASSO F. Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M=2.25[J]. Physics of Fluids, 2006, 18(6):065113. [7] PRIEBE S, MARTÍN M P. Low-frequency unsteadiness in shock wave-turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2012, 699:1-49. [8] TOUBER E, SANDHAM N D. Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble[J]. Theoretical and Computational Fluid Dynamics, 2009, 23(2):79-107. [9] GRILLI M, SCHMID P J, HICKEL S, et al. Analysis of unsteady behaviour in shockwave turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2012, 700:16-28. [10] BOOKEY P, WYCKHAM C, SMITS A. Experimental investigations of Mach 3 shock-wave turbulent boundary layer interactions[C]//35th AIAA Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2005. [11] TONG F L, LI X L, YUAN X X, et al. Incident shock wave and supersonic turbulent boundarylayer interactions near an expansion corner[J]. Computers & Fluids, 2020, 198:104385. [12] 孙东, 刘朋欣, 童福林. 展向振荡对激波/湍流边界层干扰的影响[J]. 航空学报, 2020, 41(12):124054. SUN D, LIU P X, TONG F L. Effect of spanwise oscillation on interaction of shock wave and turbulent boundary layer[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12):124054(in Chinese). [13] LOGINOV M S, ADAMS N A, ZHELTOVODOV A A. LES of shock wave/turbulent boundary layer interaction[C]//High Performance Computing in Science and Engineering' 05, 2006. [14] ZHELTOVODOV A. Some advances in research of shock wave turbulent boundary layer interactions[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2006. [15] GRILLI M, HICKEL S, ADAMS N A. Large-eddy simulation of a supersonic turbulent boundary layer over a compression-expansion ramp[J]. International Journal of Heat and Fluid Flow, 2013, 42:79-93. [16] TONG F L, LI X L, DUAN Y H, et al. Direct numerical simulation of supersonic turbulent boundary layer subjected to a curved compression ramp[J]. Physics of Fluids, 2017, 29(12):125101. [17] HELM C M, MARTIN P M. Görtler-like vortices in the LES data of a Mach 7 STBLI:AIAA-2017-0762[R]. Reston:AIAA, 2017. [18] 童福林, 唐志共, 李新亮, 等. 压缩拐角激波与旁路转捩边界层干扰数值研究[J]. 航空学报, 2016, 37(12):3588-3604. TONG F L, TANG Z G, LI X L, et al. Numerical study of shock wave and bypass transitional boundary layer interaction in a supersonic compression ramp[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12):3588-3604(in Chinese). [19] LI X L, FU D X, MA Y W, et al. Direct numerical simulation of shock/turbulent boundary layer interaction in a supersonic compression ramp[J]. Science China Physics, Mechanics and Astronomy, 2010, 53(9):1651-1658. [20] TONG F L, TANG Z G, YU C P, et al. Numerical analysis of shock wave and supersonic turbulent boundary interaction between adiabatic and cold walls[J]. Journal of Turbulence, 2017, 18(6):569-588. [21] TONG F L, YU C P, TANG Z G, et al. Numerical studies of shock wave interactions with a supersonic turbulent boundary layer in compression corner:Turning angle effects[J]. Computers & Fluids, 2017, 149:56-69. [22] LI X L, LENG Y, HE Z W. Optimized sixth-order monotonicity-preserving scheme by nonlinear spectral analysis[J]. International Journal for Numerical Methods in Fluids, 2013, 73(6):560-577. [23] PIROZZOLI S, BERNARDINI M, GRASSO F. Characterization of coherent vortical structures in a supersonic turbulent boundary layer[J]. Journal of Fluid Mechanics, 2008, 613:205-231. [24] PIROZZOLI S, GRASSO F. Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M=2.25[J]. Physics of Fluids, 2006, 18(6):065113. [25] ELENA M, LACHARME J. Experimental study of a supersonic turbulent boundary layer using a laser Doppler anemometer[J]. Journal de Mecanique Theorique et Appliquee, 1988, 7:175-190. [26] DUAN L, BEEKMAN I, MARTÍN M P. Direct numerical simulation of hypersonic turbulent boundary layers. Part 3. Effect of Mach number[J]. Journal of Fluid Mechanics, 2011, 672:245-267. [27] SUBBAREDDY P, CANDLER G. DNS of transition to turbulence in a hypersonic boundary layer[C]//41 st AIAA Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2011. [28] WU M, MARTIN M P. Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp[J]. AIAA Journal, 2007, 45(4):879-889. [29] SMITS A J, DUSSAUGE J P. Turbulent shear layers in supersonic flow[M]. New York:Springer-Verlag, 2006. [30] SIMPSON R L. Turbulent boundary-layer separation[J]. Annual Review of Fluid Mechanics, 1989, 21(1):205-232. [31] SIROVICH L. Turbulence and the dynamics of coherent structures. I. Coherent structures[J]. Quarterly of Applied Mathematics, 1987, 45(3):561-571. |