[1] NIETUBICZ C J, STUREK W B, HEAVEY K R. Computations of projectile Magnus effect at transonic velocities:AIAA-1983-0224[R]. Reston:AIAA, 1983.
[2] STUREK W B, SCHIFF L B. Computations of the Magnus effect for slender bodies in supersonic flow:AIAA-1980-1586[R]. Reston:AIAA, 1980.
[3] BHAGWANDIN V A. Numerical prediction of roll damping and Magnus dynamic derivatives for finned projectiles at angle of attack:AIAA-2012-2905[R]. Reston:AIAA, 2012.
[4] JENKE L M. Experimental roll-damping, Magnus, and static-stability characteristics of two slender missile configurations at high angles of attack (0-90 deg) and Mach numbers 0.2 through 2.5:AEDC-TR-76-58[R]. Manchester Tennessee:Arnold Engineering and Development Center, 1976.
[5] DESPIRITO J. CFD prediction of M910 projectile aerodynamics:Unsteady wake effect on Magnus moment:AIAA-2007-6580[R]. Reston:AIAA, 2007.
[6] DESPIRITO J. CFD prediction of Magnus effect in subsonic to supersonic flight:AIAA-2008-0427[R]. Reston:AIAA, 2008.
[7] DESPIRITO J. Lateral jet interaction on a finned projectile in supersonic flow:AIAA-2012-0413[R]. Reston:AIAA, 2012.
[8] 雷娟棉, 李田田, 黄灿. 高速旋转弹丸马格努斯效应数值研究[J]. 兵工学报, 2013, 34(6):718-725. LEI J M, LI T T, HUANG C. A numerical investigation of Magnus effect for high-speed spinning projectile[J]. Acta Armamentarii, 2013, 34(6):718-725(in Chinese).
[9] 薛帮猛, 杨永. 旋转弹丸马格努斯力数值计算[J]. 弹箭与制导学报, 2005, 25(2):85-87. XUE B M, YANG Y. Numerical calculation of Magnus force acting on spinning projectile[J]. Journal of Projectiles Rockets Missiles and Guidance, 2005, 25(2):85-87(in Chinese).
[10] 高旭东, 武晓松, 王晓鸣. 双时间法在弹丸非定常流场模拟中的应用[J]. 弹箭与制导学报, 2004, 24(4):157-160. GAO X D, WU X S, WANG X M. Numerical simulation of unsteady flowfield over projectile by dual-time stepping method[J]. Journal of Projectiles Rockets Missiles and Guidance, 2004, 24(4):157-160(in Chinese).
[11] XIAO Z X, LIU J, LUO K Y, et al. Numerical investigation of massively separated flows past rudimentary landing gear using advanced DES approaches[J]. AIAA Journal, 2013, 51(1):107-125.
[12] KRISHNAN V, SQUIRES K D, FORSYTHE J R. Prediction of the flow around a circular cylinder at high reynolds number:AIAA-2006-0901[R]. Reston:AIAA, 2006.
[13] VATSA V N, LOCKARD D P. Assessment of hybrid RANS/LES turbulence models for aeroacoustics applications:AIAA-2010-4001[R]. Reston:AIAA, 2010.
[14] KRIST S L, BIEDRON R T, RUMSEY C L. CFL3D user's manual (Version 5.0):NASA TM-1998-208444[R]. Washington, D.C.:NASA, 1998.
[15] SHAROV D, NAKAHASHI K. Reordering of 3-D hybrid unstructured grids for vectorized LU-SGS Navier-Stokes computations:AIAA-1997-2102[R]. Reston:AIAA,1997.
[16] ROE P. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1997, 135(2):250-258.
[17] SPALART P R. Trends in turbulence treatments:AIAA-2000-2306[R]. Reston:AIAA, 2000.
[18] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605.
[19] 刘周, 杨云军, 周伟江, 等. 基于混合方法的翼型大迎角非定常分离流动研究[J].航空学报, 2014, 35(2):372-380. LIU Z, YANG Y J, ZHOU W J, et al. Study of unsteady separation flow around airfoil at high angle of attack using hybrid RANS-LES method[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):372-380(in Chinese).
[20] PECHIER M, GUILLEN P. A combined theoretical-experimental investigation of Magnus effects:AIAA-1998-2797[R]. Reston:AIAA, 1998. |