1 |
DAY I J. Stall, surge, and 75 years of research[J]. Journal of Turbomachinery, 2016, 138(1): 011001.
|
2 |
EMMONS H W, PEARSON C E, GRANT H P. Compressor surge and stall propagation[J]. Journal of Fluids Engineering, 1955, 77(4): 455-467.
|
3 |
MCDOUGALL N M, CUMPSTY N A, HYNES T P. Stall inception in axial compressors[J]. Journal of Turbomachinery, 1990, 112(1): 116-123.
|
4 |
GARNIER V H, EPSTEIN A H, GREITZER E M. Rotating waves as a stall inception indication in axial compressors[J]. Journal of Turbomachinery, 1991, 113(2): 290-301.
|
5 |
GREITZER E M. Review—Axial compressor stall phenomena[J]. Journal of Fluids Engineering, 1980, 102(2): 134-151.
|
6 |
DAY I J. Stall inception in axial flow compressors[J]. Journal of Turbomachinery, 1993, 115(1): 1-9.
|
7 |
HE L. Computational study of rotating-stall inception in axial compressors[J]. Journal of Propulsion and Power, 1997, 13(1): 31-38.
|
8 |
HE L, ISMAEL J O. Computations of bladerow stall inception in transonic flows[J]. The Aeronautical Journal, 1999, 103(1025): 317-324.
|
9 |
BRANDVIK T, PULLAN G. An accelerated 3D Navier-Stokes solver for flows in turbomachines[J]. Journal of Turbomachinery, 2011, 133(2): 021025.
|
10 |
PULLAN G, YOUNG A M, DAY I J, et al. Origins and structure of spike-type rotating stall[J]. Journal of Turbomachinery, 2015, 137(5): 051007.
|
11 |
CROUCH J D, GARBARUK A, MAGIDOV D, et al. Origin of transonic buffet on aerofoils[J]. Journal of Fluid Mechanics, 2009, 628: 357-369.
|
12 |
TIMME S. Global instability of wing shock-buffet onset[J]. Journal of Fluid Mechanics, 2020, 885: A37.
|
13 |
SARTOR F, TIMME S. Delayed detached-eddy simulation of shock buffet on half wing-body configuration[J]. AIAA Journal, 2017, 55(4): 1230-1240.
|
14 |
MASINI L, TIMME S, PEACE A J. Scale-resolving simulations of a civil aircraft wing transonic shock-buffet experiment[J]. AIAA Journal, 2020, 58(10): 4322-4338.
|
15 |
HE W, TIMME S. Triglobal infinite-wing shock-buffet study[J]. Journal of Fluid Mechanics, 2021, 925: A27.
|
16 |
GORDON K A. Three-dimensional rotating stall inception and effects of rotating tip clearance asymmetry in axial compressors[D]. Cambridge: Massachusetts Institute of Technology, 1999.
|
17 |
SUN X F, LIU X H, HOU R W, et al. A general theory of flow-instability inception in turbomachinery[J]. AIAA Journal, 2013, 51(7): 1675-1687.
|
18 |
LIU X H, SUN D K, SUN X F. Basic studies of flow-instability inception in axial compressors using eigenvalue method[J]. Journal of Fluids Engineering, 2014, 136(3): 031102.
|
19 |
SUN X F, MA Y F, LIU X H, et al. Flow stability model of centrifugal compressors based on eigenvalue approach[J]. AIAA Journal, 2016, 54(8): 2361-2376.
|
20 |
HE C, MA Y F, LIU X H, et al. Aerodynamic instabilities of swept airfoil design in transonic axial-flow compressors[J]. AIAA Journal, 2018, 56(5): 1878-1893.
|
21 |
SCHMID P J, DE PANDO M F, PEAKE N. Stability analysis for n-periodic arrays of fluid systems[J]. Physical Review Fluids, 2017, 2(11): 113902.
|
22 |
AMESTOY P R, DUFF I S, L'EXCELLENT J Y, et al. MUMPS: A general purpose distributed memory sparse solver[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001: 121-130.
|
23 |
孙晓峰, 董旭, 张光宇, 等. 特征值理论在稳定性预测中的应用研究进展[J]. 航空学报, 2022, 43(10): 527408.
|
|
SUN X F, DONG X, ZHANG G Y, et al. Progress review of application of eigenvalue theory to stability prediction[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527408 (in Chinese).
|
24 |
XU S R, LI Y, HUANG X Q, et al. Robust Newton–Krylov adjoint solver for the sensitivity analysis of turbomachinery aerodynamics[J]. AIAA Journal, 2021, 59(10): 4014-4030.
|
25 |
SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]∥30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992.
|
26 |
ALLMARAS S R, JOHNSON F T. Modifications and clarifications for the implementation of the Spalart-Allmaras turbulence model[C]∥Seventh International Conference on Computational Fluid Dynamics (ICCFD7). 2012: 1-11.
|
27 |
HASCOET L, PASCUAL V. The Tapenade automatic differentiation tool: Principles, model, and specification[J]. ACM Transactions on Mathematical Software, 2013, 39(3): 1-43.
|
28 |
GEBREMEDHIN A H, NGUYEN D, PATWARY M M ALI, et al. ColPack: Software for graph coloring and related problems in scientific computing[J]. ACM Transactions on Mathematical Software, 2013, 40(1): 1-31.
|
29 |
SAAD Y. Iterative methods for sparse linear systems[M]. 2nd ed. Philadelphia: SIAM, 2003.
|
30 |
LEHOUCQ R B. Implicitly restarted Arnoldi methods and subspace iteration[J]. SIAM Journal on Matrix Analysis and Applications, 2001, 23(2): 551-562.
|
31 |
LEHOUCQ R B, SORENSEN D C, YANG C. ARPACK user’s guide: Solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods[M]. Philadelphia: SIAM, 1998.
|
32 |
HIGHAM D J, HIGHAM N J. MATLAB guide[M]. Philadelphia: SIAM, 2016.
|
33 |
VIRTANEN P, GOMMERS R, OLIPHANT T E, et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python[J]. Nature Methods, 2020, 17(3): 261-272.
|
34 |
STRAZISAR A J, POWELL J A. Laser anemometer measurements in a transonic axial flow compressor rotor[J]. Journal of Engineering for Power, 1981, 103(2): 430-437.
|
35 |
KRAKOS J A, DARMOFAL D L. Effect of small-scale output unsteadiness on adjoint-based sensitivity[J]. AIAA Journal, 2010, 48(11): 2611-2623.
|
36 |
BREUGELMANS F A E, MATHIOUDAKIS K, CASALINI F. Rotating stall cells in a low-speed axial flow compressor[J]. Journal of Aircraft, 1985, 22(3): 175-181.
|