航空学报 > 2013, Vol. 34 Issue (10): 2277-2286   doi: 10.7527/S1000-6893.2013.0169

翼型加装格尼襟翼的高亚声速气动特性研究

崔钊, 韩东, 李建波   

  1. 南京航空航天大学 航空宇航学院, 江苏 南京 210016
  • 收稿日期:2012-11-19 修回日期:2013-03-14 出版日期:2013-10-25 发布日期:2013-04-08
  • 通讯作者: 李建波,Tel.: 025-84895188 E-mail: ljb101@nuaa.edu.cn E-mail:ljb101@nuaa.edu.cn
  • 作者简介:崔钊 男, 博士研究生。主要研究方向: 直升机总体设计、 旋翼空气动力学、 直升机飞行力学。 Tel: 025-84895188 E-mail: hawkcz@nuaa.edu.cn;韩东 男, 博士, 副教授。主要研究方向: 旋翼动力学设计、 直升机结构及载荷分析。 Tel: 025-84895188 E-mail: donghan@nuaa.edu.cn;李建波 男, 博士, 研究员, 博士生导师。主要研究方向: 旋翼类飞行器总体设计研究、 直升机气动及飞行动力学研究、旋翼结构及动力学设计。 Tel: 025-84895188 E-mail:ljb101@nuaa.edu.cn
  • 基金资助:

    国家"863"计划(2011AA7052002);江苏省研究生培养创新工程(CX10B_104Z);江苏高校优势学科建设工程资助项目

Study on Aerodynamic Characteristics of Airfoil with Gurney Flaps Under High Subsonic Flow

CUI Zhao, HAN Dong, LI Jianbo   

  1. College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • Received:2012-11-19 Revised:2013-03-14 Online:2013-10-25 Published:2013-04-08
  • Supported by:

    National High-tech Research and Development Program of China (2011AA7052002);Funding of Jiangsu Innovation Program for Graduate Education (CX10B_104Z);A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions

摘要:

为研究高亚声速下格尼襟翼(GF)对翼型气动性能的影响,采用数值计算方法研究了NACA 8-H-12翼型加装不同高度格尼襟翼后的气动特性。数值计算以雷诺平均Navier-Stokes(RANS)方程作为控制方程,采用有限体积法进行离散,通量计算采用Roe通量差分分裂格式,湍流模型为剪切应力输运(SST) k-ω两方程模型。格尼襟翼高度分别为1%、2%和5%弦长高度,垂直于翼型弦线安装,安装位置分别位于后缘和距后缘5%弦长处。计算结果表明:在马赫数Ma=0.8时,格尼襟翼后方形成了双涡结构,该结构对翼型绕流的加速作用增大了翼型的环量,从而使翼型升力系数显著增大;小迎角下襟翼对上表面激波位置的后移作用也有利于翼型增升。关于不同襟翼安装位置的研究表明,襟翼安装于后缘能够带来更大的升阻比增量。在0°~12°迎角范围内,1%、2%和5%弦长高度的格尼襟翼均能够提高翼型在相同升力系数下的升阻比,但较高的格尼襟翼使翼型力矩系数显著增大,因此对于实际工程应用,需选择适当的襟翼高度以避免由于翼型低头力矩过大造成不利影响。

关键词: 格尼襟翼, 数值计算, 激波, 气动特性, 升阻比

Abstract:

In order to investigate the performance of airfoils equipped with Gurney flaps (GF) under high subsonic flow, the aerodynamic characteristics of airfoil NACA 8-H-12 with Gurney flaps of different heights are calculated by means of a numerical method. The Reynolds average Navier-Stokes (RANS) equations are chosen as the governing equations in numerical calculation, with the application of the finite volume method for discretization. The Roe flux difference splitting scheme is employed to calculate the flux. Turbulence model is shear stress transition (SST) k-ω two equations model. The heights of the Gurney flaps are 1%, 2% and 5% chord length respectively, mounted perpendicular to the chordline of the airfoil at the trailing edge and 5% chord ahead of the trailing edge. The results show that a double vortex structure is formed behind the Gurney flap when the Mach number is 0.8. Because of the acceleration of the flow around the airfoil, the airfoil circulation is increased by this structure, and therefore the lift coefficient increases significantly. The shock wave position is postponed at a lower angle of attack, and this phenomenon is beneficial to lift enhancement. An equipment location comparison shows that the Gurney flap equipped at the airfoil trailing edge improves the lift-drag ratio most significantly. Gurney flaps of 1%, 2% and 5% chord height are all able to improve the lift-drag ratio at the same given lift coefficient, but higher Gurney flap makes the airfoil moment coefficient increase significantly. So for practical application, the height of the Gurney flaps must be limited to avoid the adverse effects caused by excessive nose-down moment.

Key words: Gurney flap, numerical calculation, shock wave, aerodynamic characteristic, lift-drag ratio

中图分类号: