[1] Zhu Y, Liu L. Dynamic model of parachute-projectile systems based on Lagrange mechanics. Acta Aeronautica et Astronautica Sinica, 2009, 30(7): 1208-1213. (in Chinese) 朱勇, 刘莉. 基于拉格朗日力学的伞-弹系统动力学模型. 航空学报, 2009, 30(7): 1208-1213.
[2] Tang Q G, Zhang Q B, Zhang X J, et al. Nine-degree-of-freedom model of bomb-parachute system. Acta Arm amentarii, 2007, 28(4): 449-452.(in Chinese) 唐乾刚, 张青斌, 张晓今, 等. 伞-弹系统九自由度动力学模型. 兵工学报, 2007, 28(4): 449-452.
[3] Shu J R, Wang B G, Han Z P, et al. Analysis on three body motion of parachute-projectile system. Acta Aeronautica et Astronautica Sinica, 2001, 22(6): 481-485. (in Chinese) 舒敬荣, 王宝贵, 韩子鹏, 等. 伞-弹系统三体运动分析. 航空学报, 2001, 22(6): 481-485.
[4] Zhu X, Cao Y H. Numerical simulation of planform geometry effect on parafoil aerodynamic performance. Acta Aeronautica et Astronautica Sinica, 2012, 33(11): 1998-2007. (in Chinese) 朱旭, 曹义华. 翼伞平面形状对翼伞气动性能的影响. 航空学报, 2012, 32(11): 1998-2007.
[5] Zhu X, Cao Y H. Effects of arc-anhedral angle, airfoil and leading edge cut on parafoil aerodynamic performance. Acta Aeronautica et Astronautica Sinica, 2012, 33(7): 1189-1200. (in Chinese) 朱旭, 曹义华. 翼伞弧面下反角、翼型和前缘切口对翼伞气动性能的影响. 航空学报, 2012, 33(7): 1189-1200.
[6] Wu Z, Cao Y H, Song Q F. Numerical simulation of fluid-structure interaction in conical parachute's opening process. Journal of Aerospace Power, 2009, 24(7): 1584-1593. (in Chinese) 吴卓, 曹义华, 宋乾福. 锥型降落伞开伞过程流动结构相互作用的数值模拟. 航空动力学报, 2009, 24(7): 1584-1593.
[7] Peng Y, Zhang Q B, Qin Z Z. Simulation of parachute final inflation phase. Journal of National University of Defense Technology, 2004, 26(2): 13-16. (in Chinese) 彭勇, 张青斌, 秦子增. 降落伞主充气阶段数值模拟. 国防科技大学学报, 2004, 26(2): 13-16.
[8] Yu L, Shi X L, Ming X. Numerical simulation of parachute during opening process. Acta Aeronautica et Astronautica Sinica, 2007, 28(1): 52-57. (in Chinese) 余莉, 史献林, 明晓. 降落伞充气过程的数值模拟. 航空学报, 2007, 28(1): 52-57.
[9] Brooks A N, Hughes T J R. Streamling upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, 1982, 32(1-3): 199-259.
[10] Tezduyar T E, Behr M, Mittal S, et al. Stabilized finite element formulations for incompressible flow computations. Advances in Applied Mechanics, 1992, 28: 1-44.
[11] Tezduyar T E, Behr M, Liou J. A new strategy for finite element computations involving moving boundaries and interfaces-the deforming-spatial-domain/space-time procedure: I. The concept and the preliminary numerical tests. Computer Methods in Applied Mechanics and Engineering, 1992, 94(5): 339-351.
[12] Kalro V, Tezduyar T E. A parallel 3D computational method for fluid-structure interactions in parachute systems. Computer Methods in Applied Mechanics and Engineering, 2000, 190(20): 321-332.
[13] Stein K, Benney R, Tezduyar T E, et al. Fluid-structure interactions of a cross parachute: numerical simulation. Computer Methods in Applied Mechanics and Engineering, 2001, 191(2): 673-687.
[14] Stein K, Benney R, Tezduyar T E. Fluid-structure interactions of a round parachute: modeling and simulation techniques. Journal of Aircraft, 2001, 38 (5): 800-808.
[15] Takizawa K, Spielman T, Tezduyar T E. Space-time FSI modeling and dynamical analysis of spacecraft parachutes and pracachute clusters. Computational Mechanics, 2011, 48(1): 345-364.
[16] Takizawa K, Tezduyar T E. Computational methods for parachute fluid-structure interactions. Archives Computational Methods in Enggineering, 2012, 19(2): 125-169.
[17] Ibos C, Lacroix C, Chuzet L, et al. SINPA, a full 3D fluid-structure softwar for parachute simulation. AIAA-1997-1508, 1997.
[18] Tutt B A, Taylor A P. The use of LS-DYNA to simulate the inflation of a parachute canopy. 18th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Munich: American Institute of Aeronautics and Astronautics, 2005: 1608-1617.
[19] Coquet Y, Bordenave P. Improvements in fluid structure interaction simulations of parachute using LS-DYNA. 21st AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Dublin: American Institute of Aeronautics and Astronautics, 2011: 2590-2598.
[20] Ergun S. Fluid flow through packed beds. Chemical Engineering Progress, 1952, 48(2): 89-94.
[21] Fredette R O. Parachute research above critical aerodynamic velocities. Journal of Aircraft, 1961, 1(11): 602-603.
[22] Ewing E G, Knacke T W, Bixby H W. Recovery systems design guide. Wu J P, translated. Beijing: Aviation Industry Press, 1988: 223-224. (in Chinese) Ewing E G, Knacke T W, Bixby H W. 回收系统设计指南. 吴剑萍, 译. 北京: 航空工业出版社, 1988: 223-224.
[23] Wang L R. Parachute theory and application. Beijing: China Astronautic Publishing House, 1997: 102-104. (in Chinese) 王利荣. 降落伞理论与应用. 北京: 宇航出版社, 1997: 102-104. |