1 |
吴希明, 吕乐丰, 张广林. 民用高速旋翼飞行器发展战略分析及关键技术展望[J]. 南京航空航天大学学报, 2022, 54(5): 827-835.
|
|
WU X M, LV L F, ZHANG G L. Development strategy analysis and key technology prospect of civil high-speed rotorcraft[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2022, 54(5): 827-835 (in Chinese).
|
2 |
李春华, 樊枫, 徐明. 共轴刚性旋翼构型高速直升机发展研究[J]. 航空科学技术, 2021, 32(1): 47-52.
|
|
LI C H, FAN F, XU M. The development overview of coaxial rigid rotor helicopter[J]. Aeronautical Science & Technology, 2021, 32(1): 47-52 (in Chinese).
|
3 |
李建波. 复合式直升机技术发展分析[J]. 南京航空航天大学学报, 2016, 48(2): 149-158.
|
|
LI J B. Progress of compound helicopter technology[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2016, 48(2): 149-158 (in Chinese).
|
4 |
黄明其, 徐栋霞, 何龙, 等. 常规旋翼构型复合式高速直升机发展概况及关键技术[J]. 航空动力学报, 2021, 36(6): 1156-1168.
|
|
HUANG M Q, XU D X, HE L, et al. Development overview and key technologies of high speed hybrid helicopter with single main rotor[J]. Journal of Aerospace Power, 2021, 36(6): 1156-1168 (in Chinese).
|
5 |
WANG X, BAUKNECHT A, MAURYA S, et al. Slowed hingeless rotor wind tunnel tests and validation at high advance ratios[J]. Journal of Aircraft, 2021, 58(1): 153-166.
|
6 |
REDDINGER J P, GANDHI F, KANG H. Performance and hub vibrations of an articulated slowed-rotor compound helicopter at high speeds[C]∥ Proceedings of the 71st Annual Forum of AHS International. Fairfax: American Helicopter Society, 2015: 1345-1361.
|
7 |
NAGARAJ V T, CHOPRA I. Dynamics considerations for high speed flight of compound helicopters[C]∥ Proceedings of the 58th Annual Forum of AHS International. Fairfax: American Helicopter Society, 2002: 1971-1804.
|
8 |
BERRY B, CHOPRA I. Performance and vibratory load measurements of a slowed-rotor at high advance ratios[C]∥ Proceedings of the 68th Annual Forum of AHS International. Fairfax: American Helicopter Society, 2012: 1293-1305.
|
9 |
YEO H, JOHNSON W. Aeromechanics analysis of a heavy lift slowed-rotor compound helicopter[J]. Journal of Aircraft, 2007, 44(2): 501-508.
|
10 |
FLOROS M W, JOHNSON W. Performance analysis of the slowed-rotor compound helicopter configuration[J]. Journal of the American Helicopter Society, 2009, 54(2): 22002-2200212.
|
11 |
YEO H, JOHNSON W. Optimum design of a compound helicopter[J]. Journal of Aircraft, 2009, 46(4): 1210-1221.
|
12 |
刘超凡, 朱清华, 刘佳. 复合式高速直升机旋翼下洗流对机翼的气动影响分析[J]. 航空工程进展, 2023, 14(1): 38-46.
|
|
LIU C F, ZHU Q H, LIU J. Aerodynamic effect analysis of rotor downwash on wings of composite high-speed helicopter[J]. Advances in Aeronautical Science and Engineering, 2023, 14(1): 38-46 (in Chinese).
|
13 |
万佳, 陈铭. 机翼位置对复合式直升机旋翼-机翼干扰的影响[J]. 北京航空航天大学学报, 2009, 35(5): 519-522.
|
|
WAN J, CHEN M. Influence of wing location on rotor-wing interaction of compound helicopter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(5): 519-522 (in Chinese).
|
14 |
孔卫红, 陈仁良. 反流区对复合高速直升机旋翼气动特性的影响[J]. 航空学报, 2011, 32(2): 223-230.
|
|
KONG W H, CHEN R L. Effect of reverse flow region on characteristics of compound high speed helicopter rotor[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(2): 223-230 (in Chinese).
|
15 |
王焕瑾, 高正. 旋翼自转状态在高速直升机升力转移过程中的应用[J]. 南京航空航天大学学报, 2002, 34(1): 1-5.
|
|
WANG H J, GAO Z. Application of rotor autoratation to lift transfer[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2002, 34(1): 1-5 (in Chinese).
|
16 |
林清, 刘慧英, 刘娟霞, 等. 降速自转旋翼-机翼复合飞行器飞行特性研究[J]. 飞行力学, 2021, 39(5): 31-37.
|
|
LIN Q, LIU H Y, LIU J X, et al. Research on the flight characteristic of a slowed rotor compound aircraft[J]. Flight Dynamics, 2021, 39(5): 31-37 (in Chinese).
|
17 |
GUDMUNDSSON S. General aviation aircraft design: Applied methods and procedures[M].Oxford: Butterworth-Heinemann, 2014:379-398.
|
18 |
SEKULA M K, GANDHI F. Effects of auxiliary lift and propulsion on helicopter vibration reduction and trim[J]. Journal of Aircraft, 2004, 41(3): 645-656.
|
19 |
原昕, 招启军, 赵国庆. 轴流状态对转螺旋桨气动性能高效预测方法[J/OL]. 航空动力学报,(2023-04-18)[2023-05-28]. .
|
|
YUAN X, ZHAO Q J, ZHAO G Q. Efficient aerodynamic prediction method of contra-rotating propellers in axial flight[J/OL]. Journal of Aerospace Power,(2023-04-18)[2023-05-28]. .
|
20 |
刘沛清. 空气螺旋桨理论及其应用[M]. 北京: 北京航空航天大学出版社, 2006: 56-63.
|
|
LIU P Q. Air propeller theory and its applications[M]. Beijing: Beihang University Press, 2006: 56-63 (in Chinese).
|
21 |
JOHNSON W. Rotorcraft aeromechanics[M]. Cambridge: Cambridge University Press, 2013: 39-60.
|
22 |
PADFIELD G. Helicopter flight dynamics [M].2nd ed. Washington, D. C.: AIAA, 2007: 115-119.
|
23 |
PETERS D A, HAQUANG N. Technical note: Dynamic inflow for practical applications[J]. Journal of the American Helicopter Society, 1988, 33(4): 64-68.
|
24 |
PITT D M, PETERS D A. Theoretical prediction of dynamic-inflow derivatives[C]∥ Sixth European Rotorcraft and Powered Lift Aircraft Form. Bristol: ERF, 1980: 1-18.
|
25 |
JOHNSON W. Helicopter theory[M]. Princeton: Princeton University Press, 1980: 760-767.
|
26 |
陈仁良, 高正. 直升机飞行动力学[M]. 2版. 北京: 科学出版社, 2019: 57-65.
|
|
CHEN R L, GAO Z. Helicopter flight dynamics[M]. 2nd ed. Beijing: Science Press, 2019: 57-65 (in Chinese).
|
27 |
YEO H, BOUSMAN W G, JOHNSON W. Performance analysis of a utility helicopter with standard and advanced rotors[J]. Journal of the American Helicopter Society, 2004, 49(3): 250-270.
|
28 |
HILBERT K B. A mathematical model of the UH-60 helicopter: NASA-TM-85980[R]. Washington, D.C. : NASA, 1984.
|
29 |
DAVIDS S J. Predesign study for a modern 4-bladed rotor for the RSRA: NANS-TM-CR-166155[R]. Washington, D. C. : NASA, 1981.
|