Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (10): 129125-129125.doi: 10.7527/S1000-6893.2023.29125
• Fluid Mechanics and Flight Mechanics • Previous Articles Next Articles
Jing YU, Anlin JIANG, Liang LIU, Xiaojun WU, Yewei GUI, Shenshen LIU()
Received:
2023-06-05
Revised:
2023-08-03
Accepted:
2023-08-25
Online:
2024-05-25
Published:
2023-09-01
Contact:
Shenshen LIU
E-mail:lsssml1990@126.com
Supported by:
CLC Number:
Jing YU, Anlin JIANG, Liang LIU, Xiaojun WU, Yewei GUI, Shenshen LIU. PCA aerodynamic geometry parametrization method[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 129125-129125.
Table 4
Geometric feature fitting error for 100 test airfoil data
模态数 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|
上表面最大拟合误差均值 | 0.005 5 | 0.003 3 | 0.001 7 | 0.000 8 | 0.000 3 | 0.000 1 |
下表面最大拟合误差均值 | 0.005 2 | 0.003 1 | 0.001 7 | 0.000 9 | 0.000 3 | 0.000 1 |
前缘半径误差均值 | 0.004 1 | 0.002 7 | 0.001 4 | 0.000 9 | 0.000 4 | 0.000 1 |
最大厚度误差均值 | 0.003 6 | 0.002 0 | 0.001 0 | 0.000 5 | 0.000 2 | 0.000 1 |
最大厚度位置误差均值 | 0.015 9 | 0.009 3 | 0.006 0 | 0.002 9 | 0.001 2 | 0.000 1 |
最大弯度误差均值 | 0.002 0 | 0.001 3 | 0.000 7 | 0.000 4 | 0.000 2 | 0.000 1 |
最大弯度位置误差均值 | 0.024 9 | 0.023 7 | 0.006 0 | 0.002 7 | 0.001 4 | 0.000 5 |
Table 6
Simulation results for cases with various sample numbers
算例编号 | 表征能力达 98%的模态数 | 测试翼型4 最大拟合误差 | 测试翼型9 最大拟合误差 | 表征能力达 100%的模态数 | 测试翼型4 最大拟合误差 | 测试翼型9 最大拟合误差 |
---|---|---|---|---|---|---|
3-1 | 5 | 0.001 3 | 0.003 6 | 9 | 0.000 03 | 0.000 3 |
3-2 | 5 | 0.000 8 | 0.002 9 | 9 | 0.000 03 | 0.000 1 |
3-3 | 5 | 0.000 7 | 0.002 6 | 9 | 0.000 02 | 0.000 1 |
3-4 | 5 | 0.000 7 | 0.002 6 | 9 | 0.000 02 | 0.000 1 |
3-5 | 5 | 0.000 9 | 0.003 8 | 9 | 0.000 04 | 0.000 1 |
3-6 | 5 | 0.000 7 | 0.002 9 | 9 | 0.000 03 | 0.000 2 |
3-7 | 5 | 0.000 6 | 0.002 6 | 9 | 0.000 03 | 0.000 2 |
3-8 | 5 | 0.000 6 | 0.002 9 | 9 | 0.000 03 | 0.000 1 |
Table 10
Simulation results for cases constructed by total airfoil grid points
算例编号 | 表征能力达 98%的模态数 | 测试翼型4 最大拟合误差 | 测试翼型9 最大拟合误差 | 表征能力达 100%的模态数 | 测试翼型4 最大拟合误差 | 测试翼型9 最大拟合误差 |
---|---|---|---|---|---|---|
5-1 | 8 | 0.002 0 | 0.013 4 | 13 | 0.000 7 | 0.002 9 |
5-2 | 8 | 0.001 5 | 0.013 0 | 14 | 0.000 3 | 0.002 1 |
5-3 | 8 | 0.002 9 | 0.014 9 | 16 | 0.000 7 | 0.002 1 |
5-4 | 10 (98.55%) | 0.000 8 | 0.002 9 | 18 | 0.000 4 | 0.000 2 |
5-5 | 7 | 0.001 6 | 0.012 9 | 13 | 0.000 4 | 0.002 9 |
5-6 | 8 | 0.001 5 | 0.012 9 | 14 | 0.000 3 | 0.002 1 |
5-7 | 8 | 0.002 7 | 0.015 0 | 16 | 0.000 3 | 0.002 1 |
5-8 | 9 (98.07%) | 0.001 2 | 0.011 0 | 18 | 0.000 4 | 0.000 2 |
Table 11
Fitting coefficients for RAE2822
模态数 | 上/下表面拟合系数 |
---|---|
4 | [0.007 0;0.007 3;-0.015 0;-0.009 5] |
[-0.092 6;-0.029 0;0.012 7;0.018 4] | |
5 | [0.007 0;0.007 3;-0.015 0;-0.009 5;-0.004 2] |
[-0.092 6;-0.029 0;0.012 7;0.018 4; 0.012 1] | |
9 | [0.007 0;0.007 3;-0.015 0;-0.009 5;-0.004 2;-0.002 4;0.002 3;0.000 1;0.000 05] |
[-0.092 6;-0.029 0;0.012 7;0.018 4;0.012 1;-0.005 9;0.004 7;-0.000 4;-0.000 08] |
1 | 韩忠华, 高正红, 宋文萍, 等. 翼型研究的历史、现状与未来发展[J]. 空气动力学学报, 2021, 39(6):1-36. |
HAN Z H, GAO Z H, SONG W P, et al. On airfoil research and development: History, current status, and future directions[J]. Acta Aerodynamica Sinica, 2021, 39(6): 1-36 (in Chinese). | |
2 | SAMAREH J A. Survey of shape parameterization techniques for high-fidelity multidisciplinary shape optimization[J]. AIAA Journal, 2001, 39(5): 877-884. |
3 | 关晓辉, 李占科, 宋笔锋. CST气动外形参数化方法研究[J]. 航空学报, 2012, 33(4): 625-633. |
GUAN X H, LI Z K, SONG B F. A study on CST aerodynamic shape parameterization method[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(4): 625-633 (in Chinese). | |
4 | 王丹, 白俊强, 黄江涛. FFD方法在气动优化设计中的应用[J]. 中国科学: 物理学 力学 天文学, 2014, 44(3): 267-277. |
WANG D, BAI J Q, HUANG J T. The application of FFD method in aerodynamic optimization design[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2014, 44(3): 267-277 (in Chinese). | |
5 | 陈颂, 白俊强, 孙智伟, 等. 基于DFFD技术的翼型气动优化设计[J]. 航空学报, 2014, 35(3): 695-705. |
CHEN S, BAI J Q, SUN Z W, et al. Aerodynamic optimization design of airfoil using DFFD technique[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3): 695-705 (in Chinese). | |
6 | KULFAN B M. Universal parametric geometry representation method[J]. Journal of Aircraft, 2008, 45(1): 142-158. |
7 | 刘传振, 段焰辉, 蔡晋生. 使用类别形状函数的多目标气动外形优化设计[J]. 气体物理, 2016, 1(2): 37-46. |
LIU C Z, DUAN Y H, CAI J S. Multi-objective aerodynamic shape optimization based on class and shape transformation[J]. Physics of Gases, 2016, 1(2): 37-46 (in Chinese). | |
8 | KULFAN B, BUSSOLETTI J. “Fundamental” parameteric geometry representations for aircraft component shapes: AIAA-2006-6948[R]. Reston: AIAA, 2006. |
9 | 张德虎, 席胜, 田鼎. 典型翼型参数化方法的翼型外形控制能力评估[J]. 航空工程进展, 2014, 5(3): 281-288, 295. |
ZHANG D H, XI S, TIAN D. Geometry control ability evaluation of classical airfoil parametric methods[J]. Advances in Aeronautical Science and Engineering, 2014, 5(3): 281-288, 295 (in Chinese). | |
10 | 粟华, 龚春林, 谷良贤. 基于三维CST建模方法的两层气动外形优化策略[J]. 固体火箭技术, 2014, 37(1): 1-6, 22. |
SU H, GONG C L, GU L X. Two-level aerodynamic shape optimization strategy based on three-dimensional CST modeling method[J]. Journal of Solid Rocket Technology, 2014, 37(1): 1-6, 22 (in Chinese). | |
11 | 王迅, 蔡晋生, 屈崑, 等. 基于改进CST参数化方法和转捩模型的翼型优化设计[J]. 航空学报, 2015, 36(2): 449-461. |
WANG X, CAI J S, QU K, et al. Airfoil optimization based on improved CST parametric method and transition model[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 449-461 (in Chinese). | |
12 | 徐亚峰. 基于CST参数化方法的飞机翼型快速设计研究[D]. 南京: 南京航空航天大学, 2012. |
XU Y F. Fast airfoil design based on CST parameterization[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese). | |
13 | OYAMA A, NONOMURA T, FUJII K. Data mining of pareto-optimal transonic airfoil shapes using proper orthogonal decomposition: AIAA-2009-4000[R]. Reston: AIAA, 2009. |
14 | OYAMA A, VERBURG P, NONOMURA T, et al. Flow field data mining of pareto-optimal airfoils using proper orthogonal decomposition: AIAA-2010-1140[R]. Reston: AIAA, 2010. |
15 | POOLE D J, ALLEN C B, RENDALL T C S. Metric-based mathematical derivation of efficient airfoil design variables[J]. AIAA Journal, 2015, 53(5): 1349-1361. |
16 | MASTERS D A, TAYLOR N J, RENDALL T C S, et al. Geometric comparison of aerofoil shape parameterization methods[J]. AIAA Journal, 2017, 55(5): 1575-1589. |
17 | 邬晓敬. 气动外形优化设计中的不确定性及高维问题研究[D]. 西安: 西北工业大学, 2018. |
WU X J. Research on uncertainty and high-dimensional problems in aerodynamic shape optimization design[D].Xi’an: Northwestern Polytechnical University, 2018 (in Chinese). | |
18 | CINQUEGRANA D, IULIANO E. Investigation of adaptive design variables bounds in dimensionality reduction for aerodynamic shape optimization[J]. Computers & Fluids, 2018, 174: 89-109. |
19 | 段焰辉, 吴文华, 范召林, 等. 基于本征正交分解的气动优化设计外形数据挖掘[J]. 物理学报, 2017, 66(22): 138-147. |
DUAN Y H, WU W H, FAN Z L, et al. Proper orthogonal decomposition-based data mining of aerodynamic shape for design optimization[J]. Acta Physica Sinica, 2017, 66(22): 138-147 (in Chinese). | |
20 | JOLLIFFE I T. Principal component analysis[M]. New York: Springer, 2005. |
21 | 赵秀红. 基于主成分分析的特征提取的研究[D]. 西安: 西安电子科技大学, 2016. |
ZHAO X H. Research on feature extraction based on principal component analysis[D].Xi’an: Xidian University, 2016 (in Chinese). | |
22 | 陈坚强, 吴晓军, 张健, 等. FlowStar: 国家数值风洞(NNW)工程非结构通用CFD软件[J]. 航空学报, 2021, 42(9):625739. |
CHEN J Q, WU X J, ZHANG J, et al. FlowStar: General unstructured-grid CFD software for National Numerical Windtunnel (NNW)Project[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625739 (in Chinese). |
[1] | Jiaqi LIU, Rongqian CHEN, Jinhua LOU, Xu HAN, Hao WU, Yancheng YOU. Aerodynamic shape optimization of high-speed helicopter rotor airfoil based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529828-529828. |
[2] | Xiaopu ZHANG, Feng REN, Pengli XU, Zhimin LI, Caihong SU. Selection method of measuring parameters for rocket engine based on fault recognition [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 128522-128522. |
[3] | Yuanyuan HE, Xuan YANG, Hui HAN, Qichen WANG, Hang ZHANG. A dragonfly-like flapping wing structure based on geometry and stiffness similarity [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 227987-227987. |
[4] | Zhao KE, Yongxin SHI, Peng ZHANG, Kuo TIAN, Bo WANG. Vibration reduction optimization of complex thin-walled structures based on global POD reduced-order model [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 227900-227900. |
[5] | Qian YANG, Xiaofeng GUO, Qin LI, Wei DONG. Hot air anti-icing performance estimation method based on POD and surrogate model [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(1): 626992-626992. |
[6] | Shaobo YAO, Lijian JIANG, Wenwen ZHAO, Zheng LU, Changju WU, Weifang CHEN. Numerical method of data-driven rarefied nonlinear constitutive relations coupled with clustering [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(S2): 40-53. |
[7] | SHAO Yiwei, CHEN Jiayu, LIN Cuiying, WAN Cheng, GE Hongjuan, SHI Zhilong. Gearbox fault diagnosis with small training samples: An improved deep forest based method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(8): 625429-625429. |
[8] | TONG Fulin, DONG Siwei, DUAN Junyi, LI Xinliang. Direct numerical simulation of separation bubble in shock wave/turbulent boundary layer interaction [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(7): 125437-125437. |
[9] | SUN Dong, LIU Pengxin, SHEN Pengfei, TONG Fulin, GUO Qilong. Direct numerical simulation of shock wave/turbulent boundary layer interaction in hollow cylinder-flare configuration at Mach number 6 [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(12): 124681-124681. |
[10] | XI Zhifei, XU An, KOU Yingxin, LI Zhanwu, YANG Aiwu. Target threat assessment in air combat based on PCA-MPSO-ELM algorithm [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(9): 323895-323895. |
[11] | TONG Fulin, ZHOU Guiyu, SUN Dong, LI Xinliang. Expansion effect on shock wave and turbulent boundary layer interactions [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(9): 123731-123731. |
[12] | HAN Zhonghua, XU Chenzhou, QIAO Jianling, LIU Fei, CHI Jiangbo, MENG Guanyu, ZHANG Keshi, SONG Wenping. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(5): 623344-623344. |
[13] | TONG Fulin, SUN Dong, YUAN Xianxu, LI Xinliang. Direct numerical simulation of impinging shock wave/turbulent boundary layer interactions in a supersonic expansion corner [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(3): 123328-123328. |
[14] | SUN Dong, LIU Pengxin, TONG Fulin. Effect of spanwise oscillation on interaction of shock wave and turbulent boundary layer [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(12): 124054-124054. |
[15] | ZHANG Zhuxi, ZHU Xi, ZHU Shaochuan, ZHANG Mingyuan, DU Wenbo. Unsupervised evaluation of airspace complexity based on kernel principal component analysis [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(8): 322969-322969. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341