Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (13): 227900-227900.doi: 10.7527/S1000-6893.2022.27900
• Solid Mechanics and Vehicle Conceptual Design • Previous Articles Next Articles
Zhao KE1,2, Yongxin SHI1, Peng ZHANG3, Kuo TIAN1(), Bo WANG1
Received:
2022-08-06
Revised:
2022-10-20
Accepted:
2022-11-16
Online:
2023-07-15
Published:
2022-11-29
Contact:
Kuo TIAN
E-mail:tiankuo@dlut.edu.cn
Supported by:
CLC Number:
Zhao KE, Yongxin SHI, Peng ZHANG, Kuo TIAN, Bo WANG. Vibration reduction optimization of complex thin-walled structures based on global POD reduced-order model[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 227900-227900.
Table 2
Vibration reduction optimization results ofS-shaped curved stiffened shells
参数 | 下限 | 上限 | 初始值 | 优化值 | ||
---|---|---|---|---|---|---|
EGO降阶 | EGO全阶 | MIGA降阶 | ||||
S1/mm | 1.50 | 4.50 | 3.00 | 1.50 | 1.50 | 1.50 |
S2/mm | 1.50 | 4.50 | 3.00 | 4.27 | 4.46 | 1.89 |
S3/mm | 1.50 | 4.50 | 3.00 | 4.49 | 4.29 | 4.49 |
S4/mm | 1.50 | 4.50 | 3.00 | 2.46 | 2.67 | 1.92 |
S5/mm | 1.50 | 4.50 | 3.00 | 4.41 | 4.33 | 4.50 |
T1/mm | 1.50 | 4.50 | 3.00 | 1.74 | 1.51 | 1.92 |
T2/mm | 1.50 | 4.50 | 3.00 | 2.83 | 1.81 | 3.72 |
T3/mm | 1.50 | 4.50 | 3.00 | 2.52 | 3.06 | 3.95 |
T4/mm | 1.50 | 4.50 | 3.00 | 3.72 | 3.36 | 4.44 |
T5/mm | 1.50 | 4.50 | 3.00 | 3.50 | 3.68 | 4.36 |
Ta/mm | 1.50 | 4.50 | 3.00 | 2.50 | 2.83 | 3.17 |
频段能量/dB | 1 409.2 | 298.6 | 293.3 | 349.5 | ||
质量/kg | 657.92 | 657.63 | 657.57 | 637.84 | ||
共振频率/Hz | 60.1 | 60.3 | 60.2 | 61.1 |
1 | 李增聪, 田阔, 赵海心. 面向多级加筋壳的高效变保真度代理模型[J]. 航空学报, 2020, 41(7): 623435. |
LI Z C, TIAN K, ZHAO H X. Efficient variable-fidelity models for hierarchical stiffened shells[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7): 623435 (in Chinese). | |
2 | LÉNÉ F, DUVAUT G, OLIVIER-MAILHÉ M, et al. An advanced methodology for optimum design of a composite stiffened cylinder[J]. Composite Structures, 2009, 91(4): 392-397. |
3 | 梁鲁. 减振隔振与整星及全箭动态特性相互影响的研究[D]. 哈尔滨: 哈尔滨工业大学, 2008: 15-32. |
LIANG L. Mutual influence between performances of vibration attenuation, isolation and characteristic of launch system[D]. Harbin: Harbin Institute of Technology, 2008: 15-32 (in Chinese). | |
4 | 郑晓霞, 李志强, 李文辉, 等. 发动机薄壁尾喷管振动机理分析及结构改进[J]. 太原理工大学学报, 2022, 53(2): 330-337. |
ZHENG X X, LI Z Q, LI W H, et al. Vibration mechanism analysis and structure improvement of engine thin-walled tail nozzle[J]. Journal of Taiyuan University of Technology, 2022, 53(2): 330-337 (in Chinese). | |
5 | 马兴瑞, 于登云, 韩增尧, 等. 星箭力学环境分析与试验技术研究进展[J]. 宇航学报, 2006, 27(3): 323-331. |
MA X R, YU D Y, HAN Z Y, et al. Research evolution on the satellite-rocket mechanical environment analysis & test technology[J]. Journal of Astronautics, 2006, 27(3): 323-331 (in Chinese). | |
6 | 刘小川, 马君峰, 白春玉, 等. 航空结构动力学研究的进展与展望[J]. 应用力学学报, 2022, 39(3): 409-436, 407. |
LIU X C, MA J F, BAI C Y, et al. Progress and prospect of aviation structural dynamics research[J]. Chinese Journal of Applied Mechanics, 2022, 39(3): 409-436, 407 (in Chinese). | |
7 | 李晖, 吕海宇, 邹泽煜, 等. 热环境下纤维增强复合材料圆柱壳非线性振动分析与验证[J]. 航空学报, 2022, 43(9): 425642. |
LI H, LYU H Y, ZOU Z Y, et al. Analysis and verification of nonlinear vibrations of fiber-reinforced composite cylindrical shells in thermal environment[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 425642 (in Chinese). | |
8 | 孔宪仁, 张也弛. 两自由度非线性吸振器在简谐激励下的振动抑制[J]. 航空学报, 2012, 33(6): 1020-1029. |
KONG X R, ZHANG Y C. Vibration suppression of a two-degree-of-freedom nonlinear energy sink under harmonic excitation[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(6): 1020-1029 (in Chinese). | |
9 | 刘浩, 李晓东, 杨文岐, 等. 高速飞行器翼面结构热振动试验的TARMA模型方法[J]. 航空学报, 2015, 36(7): 2225-2235. |
LIU H, LI X D, YANG W Q, et al. Thermal vibration test on wing structure of high-speed flight vehicle using TARMA model method[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7): 2225-2235 (in Chinese). | |
10 | ZHANG J, CHEN Y, ZHAI J, et al. Topological optimization design on constrained layer damping treatment for vibration suppression of aircraft panel via improved evolutionary structural optimization[J]. Aerospace Science and Technology, 2021, 112: 106619. |
11 | LUO H T, CHEN R, GUO S W, et al. Topology optimization of hard-coating thin plate for maximizing modal loss factors[J]. Coatings, 2021, 11(7): 774. |
12 | LI Z, SU X, TAN J, et al Multi-objective optimization of the layout of damping material for reducing the structure-borne noise of thin-walled structures[J]. Thin-Walled Structures, 2019, 140: 331-341. |
13 | MADEIRA J F A, ARAÚJO A L, SOARES C M M, et al. Multiobjective optimization for vibration reduction in composite plate structures using constrained layer damping[J]. Computers & Structures, 2020, 232: 105810. |
14 | XU Z D, HUANG X H, XU F H, et al. Parameters optimization of vibration isolation and mitigation system for precision platforms using non-dominated sorting genetic algorithm[J]. Mechanical Systems and Signal Processing, 2019, 128: 191-201. |
15 | 王文胜. 复杂细长结构动力模型降价及优化研究[D]. 大连: 大连理工大学, 2012: 1-12. |
WANG W S. Study on dynamic model reduction and optimization of complicated slender structures[D]. Dalian: Dalian University of Technology, 2012: 1-12 (in Chinese) . | |
16 | 黄海. 考虑阻尼涂层的结构动力拓扑优化方法研究[D]. 大连: 大连理工大学, 2020: 10-13. |
HUANG H. A study on structural dynamic topology optimization method with damping coating[D]. Dalian: Dalian University of Technology, 2020: 10-13 (in Chinese) . | |
17 | FEENY B F, KAPPAGANTU R. On the physical interpretation of proper orthogonal modes in vibrations[J]. Journal of Sound and Vibration, 1998, 211(4): 607-616. |
18 | 吉洪蕾, 陈仁良, 李攀. 耦合POD重构舰面流场的直升机舰面起降数值模拟[J]. 航空学报, 2016, 37(3): 771-779. |
JI H L, CHEN R L, LI P. Numerical simulation of a helicopter operating in a reconstructed ship airwake based on POD method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3): 771-779 (in Chinese). | |
19 | 邱亚松, 白俊强, 华俊. 基于本征正交分解和代理模型的流场预测方法[J]. 航空学报, 2013, 34(6): 1249-1260. |
QIU Y S, BAI J Q, HUA J. Flow field estimation method based on proper orthogonal decomposition and surrogate model[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6): 1249-1260 (in Chinese). | |
20 | 段焰辉, 蔡晋生, 刘秋洪. 基于代理模型方法的翼型优化设计[J]. 航空学报, 2011, 32(4): 617-627. |
DUAN Y H, CAI J S, LIU Q H. Surrogate model based optimization for airfoil design[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(4): 617-627 (in Chinese). | |
21 | 郑保敬, 梁钰, 高效伟, 等. 功能梯度材料动力学问题的POD模型降阶分析[J]. 力学学报, 2018, 50(4): 787-797. |
ZHENG B J, LIANG Y, GAO X W, et al. Analysis for dynamic response of functionally graded materials using pod based reduced order model[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 787-797 (in Chinese). | |
22 | 倪振华, 江棹荣, 谢壮宁. 本征正交分解技术及其在预测屋盖风压场中的应用[J]. 振动工程学报, 2007, 20(1): 1-8. |
NI Z H, JIANG Z R, XIE Z N. POD technique and its application to prediction of wind pressure fields on roof[J]. Journal of Vibration Engineering, 2007, 20(1): 1-8 (in Chinese). | |
23 | BAMER F, BUCHER C. Application of the proper orthogonal decomposition for linear and nonlinear structures under transient excitations[J]. Acta Mechanica, 2012, 223(12): 2549-2563. |
24 | TIAN K, WANG B, ZHOU Y, et al. Proper-orthogonal-decomposition-based buckling analysis and optimization of hybrid fiber composite shells[J]. AIAA Journal, 2018, 56(5): 1723-1730. |
25 | TIAN K, MA X T, LI Z C, et al. A multi-fidelity competitive sampling method for surrogate-based stacking sequence optimization of composite shells with multiple cutouts[J]. International Journal of Solids and Structures, 2020, 193-194: 1-12. |
26 | 田阔. 基于多保真度建模的多层级筒壳屈曲分析及优化方法研究[D]. 大连: 大连理工大学, 2018: 72-91. |
TIAN K. Research on buckling analysis and optimization methods of hierarchical cylindrical shells based on multi-fidelity modeling[D]. Dalian: Dalian University of Technology, 2018: 72-91 (in Chinese). | |
27 | RITTO T G, BUEZAS F S, SAMPAIO R. A new measure of efficiency for model reduction: Application to a vibroimpact system[J]. Journal of Sound and Vibration, 2011, 330(9): 1977-1984. |
28 | LI Y W, TIAN K, HAO P, et al. Optimization design for vibration reduction of complex configuration structures via global reduced-order basis[J]. Engineering Optimization, 2021, 53(10): 1819-1833. |
29 | 余旭东, 赵育善. 飞行器结构动力学[M]. 西安: 西北工业大学出版社, 1998: 181-196. |
YU X D, ZHAO Y S. Aircraft structural dynamics[M]. Xi'an: Northwestern Polytechnical University Press, 1998: 181-196 (in Chinese). | |
30 | 刘海涛. 基于近似模型的工程优化方法中相关问题研究及应用[D]. 大连: 大连理工大学, 2016: 29-61. |
LIU H T. The research and application of metamodel-based engineering optimization[D]. Dalian: Dalian University of Technology, 2016: 29-61 (in Chinese). | |
31 | 王超, 高正红, 张伟, 等. 自适应设计空间扩展的高效代理模型气动优化设计方法[J]. 航空学报, 2018, 39(7): 121745. |
WANG C, GAO Z H, ZHANG W, et al. Efficient surrogate-based aerodynamic design optimization method with adaptive design space expansion[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7): 121745 (in Chinese). | |
32 | 洪林雄, 李华聪, 彭凯, 等. 基于改进学习策略的Kriging模型结构可靠度算法[J]. 西北工业大学学报, 2020, 38(2): 412-419. |
HONG L X, LI H C, PENG K, et al. Structural reliability algorithms of Kriging model based on improved learning strategy[J]. Journal of Northwestern Polytechnical University, 2020, 38(2): 412-419 (in Chinese). | |
33 | 王红涛, 竺晓程, 杜朝辉. 改进EGO算法在跨声速翼型气动优化设计中的应用[J]. 上海交通大学学报, 2009, 43(11): 1832-1836. |
WANG H T, ZHU X C, DU Z H. Application of the improved EGO algorithm in transonic airfoil aerodynamic optimization design[J]. Journal of Shanghai Jiao Tong University, 2009, 43(11): 1832-1836 (in Chinese). | |
34 | 蒋丽. 基于CFD的中型SUV气动减阻研究[D]. 长春: 吉林大学, 2019: 51-59. |
JIANG L. Research on low aero-drag design of mid-sized SUV on CFD[D]. Changchun: Jilin University, 2019: 51-59 (in Chinese). | |
35 | 刘常春, 吉洪湖, 黄伟, 等. 一种双S弯二元喷管的红外辐射特性数值研究[J]. 航空动力学报, 2013, 28(7): 1482-1488. |
LIU C C, JI H H, HUANG W, et al. Numerical simulation on infrared radiation characteristics of serpentine 2-D nozzle[J]. Journal of Aerospace Power, 2013, 28(7): 1482-1488 (in Chinese). |
[1] | Jing YU, Anlin JIANG, Liang LIU, Xiaojun WU, Yewei GUI, Shenshen LIU. PCA aerodynamic geometry parametrization method [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 129125-129125. |
[2] | Dehui ZHANG, Xiaohong DING, Tiannan HU, Heng ZHANG. Optimization design of natural frequencies for thin-walled structures based on improved adaptive growth method [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 228378-228378. |
[3] | Qian YANG, Xiaofeng GUO, Qin LI, Wei DONG. Hot air anti-icing performance estimation method based on POD and surrogate model [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(1): 626992-626992. |
[4] | TONG Fulin, DONG Siwei, DUAN Junyi, LI Xinliang. Direct numerical simulation of separation bubble in shock wave/turbulent boundary layer interaction [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(7): 125437-125437. |
[5] | ZHAO Xiaojian, SHAO Xiao, YANG Mingsui. Equivalence of vibro-acoustic response based on scaled thin-walled structures [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(3): 225146-225146. |
[6] | DUAN Jiatong, SUI Fucheng, LIU Hanhai, XIE Fang, OUYANG Tian, BAO Rui. Fatigue crack growth performance of thin-walled structure under bending load [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(5): 524326-524326. |
[7] | SUN Dong, LIU Pengxin, SHEN Pengfei, TONG Fulin, GUO Qilong. Direct numerical simulation of shock wave/turbulent boundary layer interaction in hollow cylinder-flare configuration at Mach number 6 [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(12): 124681-124681. |
[8] | TONG Fulin, ZHOU Guiyu, SUN Dong, LI Xinliang. Expansion effect on shock wave and turbulent boundary layer interactions [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(9): 123731-123731. |
[9] | TONG Fulin, SUN Dong, YUAN Xianxu, LI Xinliang. Direct numerical simulation of impinging shock wave/turbulent boundary layer interactions in a supersonic expansion corner [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(3): 123328-123328. |
[10] | SHA Yundong, AI Size, ZHAO Fengtong, JIANG Zhuoqun, ZHANG Jiaming. Vibro-acoustic response analysis and fatigue life prediction of thin-walled structures with high speed heat flux [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(2): 223327-223327. |
[11] | SUN Dong, LIU Pengxin, TONG Fulin. Effect of spanwise oscillation on interaction of shock wave and turbulent boundary layer [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(12): 124054-124054. |
[12] | TONG Fulin, ZHOU Guiyu, ZHOU Hao, ZHANG Peihong, LI Xinliang. Statistical characteristics of wall shear stress in shock wave and turbulent boundary layer interactions [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(5): 122504-122504. |
[13] | SHA Yundong, ZHANG Mohan, ZHAO Fengtong, ZHU Fulei. Nonlinear response analysis and test verification for thin-walled structures to thermal-acoustic loads [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(4): 222544-222544. |
[14] | MA Haoye, LI Lin, FAN Yu, WU Yaguang. Damping performance analysis of friction patches using an accelerated dynamic Lagrange method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(12): 223283-223283. |
[15] | KOU Jiaqing, ZHANG Weiwei, GAO Chuanqiang. Modal analysis of transonic buffet based on POD and DMD method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(9): 2679-2689. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341