[1] 孙灿飞, 王友仁, 沈勇, 等. 基于参数自适应变分模态分解的行星齿轮箱故障诊断[J]. 航空动力学报, 2018, 33(11): 2756-2765. SUN C F, WANG Y R, SHEN Y, et al. Fault diagnosis of planetary gearbox based on adaptive parameter variational mode decomposition[J]. Journal of Aerospace Power, 2018, 33(11): 2756-27659 (in Chinese). [2] 周兴康, 余剑波. 基于深度一维残差卷积自编码网络的齿轮箱故障诊断[J]. 机械工程学报, 2020, 56(7):96-108. ZHOU X K, YU J B. Gearbox fault diagnosis based on one-dimension residual convolutional auto-encoder[J]. Journal of Mechanical Engineering, 2020, 56(7): 96-108 (in Chinese). [3] 姜洪开, 邵海东, 李兴球. 基于深度学习的飞行器智能故障诊断方法[J]. 机械工程学报, 2019, 55(7): 27-34. JIANG H K, SHAO H D, LI X Q. Deep learning theory with application in intelligent fault diagnosis of aircraft[J]. Journal of Mechanical Engineering, 2019, 55(7): 27-34 (in Chinese). [4] 何俊. 齿轮箱振动特性分析与智能故障诊断方法研究[D]. 杭州: 浙江大学, 2018: 5-9. HE J. Vibration characteristic analysis and intelligent fault diagnosis of gearboxes[D]. Hangzhou: Zhejiang University, 2018: 5-9 (in Chinese). [5] 井陆阳. 基于深度卷积模型的旋转机械故障诊断方法研究[D]. 天津: 天津大学, 2017: 39-66. JING L Y. Fault diagnosis method of rotating machinery based on deep convolution model[D]. Tianjin: Tianjin University, 2017: 39-66 (in Chinese). [6] 孙灿飞, 王友仁. 直升机行星传动轮系故障诊断研究进展[J]. 航空学报, 2017,38(7):111-124. SUN C F, WANG Y R. Advance in study of fault diagnosis of helicopter planetary gears[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7): 111-124 (in Chinese). [7] 雷亚国, 雷锋, 孔德同, 等. 大数据下机械智能故障诊断的机遇与挑战[J]. 机械工程学报, 2018, 54(5): 94-104. LEI Y G, LEI F, KONG D T, et al. Opportunities and challenges of machinery intelligent fault diagnosis in big data era[J]. Journal of Mechanical Engineering, 2018, 54(5): 94-104 (in Chinese). [8] 胡茑庆, 陈徽鹏, 程哲, 等. 基于经验模态分解和深度卷积神经网络的行星齿轮箱故障诊断方法[J]. 机械工程学报, 2019, 55(7): 9-18. HU N Q, CHEN H P, CHENG Z, et al. Fault diagnosis for planetary gearbox based on EMD and deep convolution neural networks[J]. Journal of Mechanical Engineering, 2019, 55(7): 9-18 (in Chinese). [9] SAUFI S R, BIN AHMAD Z A, LEONG M S, et al. Challenges and opportunities of deep learning models for machinery fault detection and diagnosis: A review[J]. IEEE Access, 2019, 7: 122644-122662. [10] ZHOU Z H, JI F, Deep forest: Towards an alternative to deep neural networks[J]. National Science Review, 2019, 6(1): 74-86. [11] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998,86(11): 2278-2324. [12] KRIZHEVSKY A. ImageNet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems, 2012:1097-1105. [13] ZHANG Y, CHAN W, JAITLY N. Very deep convolutional networks for end to end speech recognition[C]//2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017:4845-4849. [14] XIA J S, MING Z H, IWASAKI A. Multiple sources data fusion via deep forest[C]//IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, 2018: 1722-1725. [15] SHEN J H, WANG S C, WANG Z Y. Growing deep forests efficiently with soft routing and learned connectivity[C]//2018 IEEE International Conference on Data Mining Workshops (ICDMW), 2018: 399-402. [16] FAN Y M, QI L, TIE Y. The cascade improved model based deep forest for small-scale datasets classification[C]//2019 8th International Symposium on Next Generation Electronics (ISNE), 2019: 1-3. [17] DING J M, LUO Q B, JIA L Y, et al. Deep forest-based fault diagnosis method for chemical process[J]. Mathematical Problems in Engineering, 2020, 2020:1-15. [18] LIU X L, TIAN Y, LEI X H, et al. Deep forest based intelligent fault diagnosis of hydraulic turbine[J]. Journal of Mechanical Science and Technology, 2019, 33(5): 2049-2058. [19] ZHANG Z Z, LI B, XU T H, et al. Deep forest-based fault diagnosis for railway turnout system in the case of limited fault data[C]//The 31 st Chinese Control and Decision Conference (CCDC), 2019: 2636-2641. [20] HU G Z, LI H F, XIA Y Q, et al. A deep Boltzmann machine and multi-grained scanning forest ensemble collaborative method and its application to industrial fault diagnosis[J]. Computers in Industry, 2018, 100: 287-296. [21] 高绪伟. 核PCA特征提取方法及其应用研究[D]. 南京: 南京航空航天大学, 2009: 1-6. GAO X W. Kernel PCA feature extraction method and its application[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009: 1-6 (in Chinese). [22] YAN H M, MU H N, YI X J, et al. Fault diagnosis of wind turbine based on PCA and GSA-SVM[C]//2019 Prognostics and System Health Management Conference (PHM-Paris), 2019: 13-17. [23] BERBACHE S, HARKAT M F, KARTZ F. Sensor fault detection and isolation techniques based on PCA[C]//2019 International Conference on Advanced Electrical Engineering (ICAEE), 2019: 1-7. [24] CARTOCCI N, COSTANTE G, NAPOLITANO M R, et al. PCA methods and evidence based filtering for robust aircraft sensor fault diagnosis[C]//2020 28th Mediterranean Conference on Control and Automation (MED), 2020: 550-555. [25] 郭莹莹, 张磊, 肖成, 等. 基于改进深度森林算法的风电机组故障诊断技术研究[J]. 可再生能源, 2019, 37(11): 1720-1725. GUO Y Y, ZHANG L, XIAO C, et al, Research on fault diagnosis technology of wind turbine based on improved deep forest algorithm[J]. Renewable energy, 2019, 37(11): 1720-1725 (in Chinese). [26] 孙春林, 范作民. 发动机故障诊断的主成分算法[J]. 航空学报, 1998(3): 87-90. SUN C L, FAN Z M. Principal components analysis algorithm for engine fault diagnosis[J]. Acta Aeronautica et Astronautica Sinica, 1998(3): 87-90 (in Chinese). [27] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 229-232. ZHOU Z H. Machine learning[M]. Beijing: Tsinghua University Press, 2016: 229-232 (in Chinese). [28] PEIXOTO S A, FILHO P R, KUMAR N A, et al. Automatic classification of pulmonary diseases using a structural co-occurrence matrix[J]. Neural Comput & Applic, 2020, 32: 10935-10945. [29] ZHOU M, WANG K, WANG Y, LUO K J, et al. Online condition diagnosis for a two-stage gearbox machinery of an aerospace utilization system using an ensemble multi-fault features indexing approach[J]. Chinese Journal of Aeronautics,2019,32(5):1100-1110. [30] NJOCK P G A, SHEN S L, ZHOU A, et al. Evaluation of soil liquefaction using AI technology incorporating a coupled ENN/t-SNE model[J]. Soil Dynamics and Earthquake Engineering, 2020, 130: 0267-7261. [31] LI Y B, DU X Q, WAN F Y, et al. Rotating machinery fault diagnosis based on convolutional neural network and infrared thermal imaging[J]. Chinese Journal of Aeronautics,2020,33(2):427-438. [32] 杜小磊, 陈志刚, 许旭, 等. 基于小波卷积自编码器和LSTM网络的轴承故障诊断研究[J].机电工程, 2019, 36(7):663-668. DOU X L, CHEN Z G, XU X, et al. Fault diagnosis of bearing based on wavelet convolutional auto-encoder and LSTM network[J]. Journal of Mechanical & Electrical Engineering, 2019,36(7):663-668 (in Chinese). [33] ZHANG B, LI W, LI X L, et al. Intelligent fault diagnosis under varying working conditions based on domain adaptive convolutional neural networks[J]. IEEE Access, 2018,6: 66367-66384. [34] JING L Y, ZHAO M, LI P, et al. A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox[J]. Measurement, 2017,111: 1-10. [35] 张立智, 徐卫晓, 井陆阳, et al. 基于二维深度卷积模型的旋转机械故障诊断[J]. 机械强度, 2020, 42(5): 1039-1044. ZHANG L Z, XU W X, JING L Y, et al. Rotating machinery fault diagnosis based on two-dimensional convolutional neural network[J]. Journal of Mechanical Strength, 2020, 42(5): 1039-1044 (in Chinese). |