ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2022, Vol. 43 ›› Issue (S2): 40-53.doi: 10.7527/S1000-6893.2022.27708
Previous Articles Next Articles
Shaobo YAO1, Lijian JIANG1, Wenwen ZHAO1(), Zheng LU2, Changju WU1, Weifang CHEN1
Received:
2022-06-30
Revised:
2022-07-27
Accepted:
2022-08-29
Online:
2022-12-25
Published:
2022-09-22
Contact:
Wenwen ZHAO
E-mail:wwzhao@zju.edu.cn
Supported by:
CLC Number:
Shaobo YAO, Lijian JIANG, Wenwen ZHAO, Zheng LU, Changju WU, Weifang CHEN. Numerical method of data-driven rarefied nonlinear constitutive relations coupled with clustering[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(S2): 40-53.
1 | TSIEN H S. Superaerodynamics, mechanics of rarefied gases[J]. Journal of the Aeronautical Sciences, 1946, 13(12): 653-664. |
2 | BHATNAGAR P L, GROSS E P, KROOK M. A model for collision processes in Gases. I. Small amplitude processes in charged and neutral one-component systems[J]. Physical Review, 1954, 94(3): 511-525. |
3 | XU K, HUANG J C. A unified gas-kinetic scheme for continuum and rarefied flows[J]. AIP Conference Proceedings, 2011, 1333(1): 525-530. |
4 | LIU S, YU P, XU K, et al. Unified gas-kinetic scheme for diatomic molecular simulations in all flow regimes[J]. Journal of Computational Physics, 2014, 259: 96-113. |
5 | 周恒, 张涵信. 空气动力学的新问题[J]. 中国科学: 物理学 力学 天文学, 2015, 45(10): 109-113. |
ZHOU H, ZHANG H X. New problems of aerodynamics[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2015, 45(10): 109-113 (in Chinese). | |
6 | 张伟伟, 寇家庆, 刘溢浪. 智能赋能流体力学展望[J]. 航空学报, 2021, 42(4): 524689. |
ZHANG W W, KOU J Q, LIU Y L. Prospect of artificial intelligence empowered fluid mechanics[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524689 (in Chinese). | |
7 | WANG J X, WU J L, XIAO H. Physics informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data[J]. Physical Review Fluids, 2017, 2(3): 1-22. |
8 | RABAULT J, KUCHTA M, JENSEN A, et al. Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control[J]. Journal of Fluid Mechanics, 2019, 865: 281-302. |
9 | SEKAR V, KHOO B C. Fast flow field prediction over airfoils using deep learning approach[J]. Physics of Fluids, 2019, 31(5): 57103. |
10 | LI Z, KOVACHKI N, AZIZZADENESHELI K, et al. Fourier neural operator for parametric partial differential equations[DB/OL]. arXiv preprint: 2010.08895, 2020. |
11 | BAR-SINAI Y, HOYER S, HICKEY J, et al. Learning data-driven discretizations for partial differential equations[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(31): 15344-15349. |
12 | KOCHKOV D, SMITH J A, ALIEVA A, et al. Machine learning-accelerated computational fluid dynamics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(21): e2101784118. |
13 | RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. |
14 | HU L, XIANG Y, ZHAN J, et al. Aerodynamic data predictions based on multi-task learning[J]. Applied Soft Computing, 2021, 116: 108369. |
15 | ZHANG J, MA W. Data-driven discovery of governing equations for fluid dynamics based on molecular simulation[J]. Journal of Fluid Mechanics, 2020, 892: A5. |
16 | XING H Y, ZHANG J, MA W J, et al. Using gene expression programming to discover macroscopic governing equations hidden in the data of molecular simulations[J]. Physics of Fluids, 2022, 34(5): 057109. |
17 | ZHAO W W, JIANG L J, YAO S B, et al. Data-driven nonlinear constitutive relations for rarefied flow computations[J]. Advances in Aerodynamics, 2021, 3(1): 540-558. |
18 | 李廷伟, 张莽, 赵文文, 等. 面向稀薄流非线性本构预测的机器学习方法[J]. 航空学报, 2021, 42(4): 524386. |
LI T W, ZHANG M, ZHAO W W, et al. Machine learning method for correction of rarefied nonlinear constitutive relations[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524386 (in Chinese). | |
19 | 蒋励剑,赵文文,陈伟芳,等. 旋转不变的数据驱动稀薄非线性本构计算方法[J/OL].航空学报, (2021-10-14)[2022-06-30]. . |
JIANG L J, ZHAO W W, CHEN W F, et al. Data-driven rarefied nonlinear constitutive relations based on rotation in-variants[J/OL]. Acta Aeronautica et As-tronautica Sinica, (2021-10-14)[2022-06-30]. . | |
20 | SAFAVIAN S R, LANDGREBE D. A survey of decision tree classifier methodology[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1991, 21(3): 660-674. |
21 | 孙吉贵, 刘杰, 赵连宇. 聚类算法研究[J]. 软件学报, 2008, 19(1): 48-61. |
SUN J G, LIU J, ZHAO L Y. Clustering algorithms research[J]. Journal of Software, 2008, 19(1): 48-61 (in Chinese). | |
22 | 贺玲, 吴玲达, 蔡益朝. 数据挖掘中的聚类算法综述[J]. 计算机应用研究, 2007, 24(1): 10-13. |
HE L, WU L D, CAI Y C. Survey of clustering algorithms in data mining[J]. Application Research of Computers, 2007, 24(1): 10-13 (in Chinese). | |
23 | SUNG H G. Gaussian mixture regression and classification[D]. Houston: Rice University, 2004: 23-47. |
24 | ZOU H, HASTIE T, TIBSHIRANI R. Sparse principal component analysis[J]. Journal of Computational and Graphical Statistics, 2006, 15(2): 265-286. |
25 | TSIEN H S. Superaerodynamics, mechanics of rarefied gases[M]. Collected Works of H.S. Tsien (1938-1956). Amsterdam: Elsevier, 2012: 406-429. |
26 | HARTIGAN J A, WONG M A. Algorithm AS 136: A K-means clustering algorithm[J]. Applied Statistics, 1979, 28(1): 100. |
27 | WOLD S, ESBENSEN K, GELADI P. Principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1987, 2(1-3): 37-52. |
28 | CALLAHAM J L, KOCH J V, BRUNTON B W, et al. Learning dominant physical processes with data-driven balance models[J]. Nature Communications, 2021, 12: 1016. |
29 | GEURTS P, ERNST D, WEHENKEL L. Extremely randomized trees[J]. Machine Learning, 2006, 63(1): 3-42. |
[1] | Tianhe GAO, Kuo TIAN, Lei HUANG, Shu ZHANG, Zengcong LI. Data⁃driven shape⁃topology optimization method for curved shells [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 428806-428806. |
[2] | Qian YANG, Yanzhe WANG, Di YANG, Zezhong LI, Weiwei QU. Prediction and planning of automatic laying speed for fiber reinforced composite materials based on data⁃driven model [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 429313-429313. |
[3] | CHEN Bo, YUE Kai, WANG Rusheng, HU Mingnan. Learning-based multi-rate multi-sensor fusion localization method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(S1): 726904-726904. |
[4] | JIANG Lijian, ZHAO Wenwen, CHEN Weifang, YAO Shaobo. Data-driven rarefied nonlinear constitutive relations based on rotation invariants [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(12): 126256-126256. |
[5] | WANG Shaoping, GENG Yixuan, SHI Cun. Life estimation of aircraft hydraulic pump based on failure physics and data driven [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(10): 527347-527347. |
[6] | LI Tingwei, ZHANG Mang, ZHAO Wenwen, CHEN Weifang, JIANG Lijian. Machine learning method for correction of rarefied nonlinear constitutive relations [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(4): 524386-524386. |
[7] | YAN Chongyang, ZHANG Yufei, CHEN Haixin. Application of field inversion based on discrete adjoint method in turbulence modeling [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(4): 524695-524695. |
[8] | CHEN Zhijie, TANG Jinhui, WANG Chong, CHENG Jizeng, CAO Shan, SHAO Xin. Using artificial intelligence in airspace system to improve airspace hierarchical governance capability [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(4): 525018-525018. |
[9] | MENG Songhe, YE Yumei, YANG Qiang, HUANG Zhen, XIE Weihua. Digital twin and its aerospace applications [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(9): 23615-023615. |
[10] | LI Baozhu, DONG Yunlong, DING Hao, GUAN Jian. Anti-bias track association algorithm based on Gaussian mixture model [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(6): 322650-322650. |
[11] | WUNIRI Qiqige, LI Xiaoping, YANG Fan, MA Shilong, WANG Huamao. A virtual test method for satellite system level verification and case study [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(7): 320768-320768. |
[12] | LIU Shuaiqi, HU Shaohai, XIAO Yang. SAR Image De-noising Based on Complex Shearlet Transform Domain Gaussian Mixture Model [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013, 34(1): 173-180. |
[13] | Zhang Lei;Li Xingshan;Yu Jinsong;Dai Jing. A Fault Prognostic Algorithm Based on Gaussian Mixture Model Particle Filter [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2009, 30(2): 319-324. |
[14] | Lu Feng;Huang Jinquan. Engine Component Performance Prognostics Based on Decision Fusion [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2009, 30(10): 1795-1800. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341