[1] ERENGIL M E, DOLLING D S. Physical causes of separation shock unsteadiness in shock-wave/boundary layer interactions:AIAA-1993-3134[R]. Reston:AIAA, 1993. [2] BRUSNIAK L, DOLLING D S. Physics of unsteady blunt-fin-induced shock wave/turbulent boundary layer interactions[J]. Journal of Fluid Mechanics, 1994, 273:375-409. [3] HOU Y X, CLEMENS N T, DOLLING D S. Wide-field PIV study of shock induced turbulent boundary layer separation:AIAA-2003-0441[R]. Reston:AIAA, 2003. [4] GANAPATHISUBRAMANI B, CLEMENS N T, DOLLING D S. Effects of upstream boundary layer on the unsteadiness of shock-induced separation[J]. Journal of Fluid Mechanics, 2007, 585:369-394. [5] HUMBLE R A, ELSINGA G E, SCARANO F, et al. Three-dimensional instantaneous structure of a shock wave/turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2009, 622:33-62. [6] HUMBLE R A, ELSINGA G E, SCARANO F, et al. Investigation of the instantaneous 3D flow organization of a shock wave/turbulent boundary layer interaction using tomographic PIV:AIAA-2007-4112[R]. Reston:AIAA, 2007. [7] HUMBLE R A, SCARANO F, OUDHEUSDEN B W. Particle image velocimetry measurements of a shock wave/turbulent boundary layer interaction[J]. Experiments of Fluids, 2007,43:173-183. [8] PIROZZOLI S, GRASSO F. Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M=2.25[J]. Physics of Fluids, 2006,18(6):065113. [9] TOUBER E, SANDHAM N D. Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble[J]. Theoretical and Computational Fluid Dynamics, 2009, 23:79-107. [10] TONG F L, YU C P, TANG Z G, et al. Numerical studies of shock wave interactions with a supersonic turbulent boundary layer in compression corner:Turning angle effects[J]. Computers and Fluids, 2017, 149:56-69. [11] 童福林, 周桂宇,周浩,等. 激波/湍流边界层干扰物面剪切应力统计特性[J].航空学报,2019, 40(5):122504. TONG F L, ZHOU G Y, ZHOU H, et al. Statistical characteristics of wall shear stress in shock wave and turbulent boundary layer interaction[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5):122504(in Chinese). [12] 童福林, 孙东, 袁先旭, 等. 超声速膨胀角入射激波/湍流边界层干扰直接数值模拟[J]. 航空学报, 2020, 41(3):123328. TONG F L, SUN D, YUAN X X, et al. Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction in a supersonic expansion corner[J]. Acta Aeronautica et Astronautica Sinica, 2020,41(3):123328(in Chinese). [13] TONG F L, LI X L, YUAN X X, et al. Incident shock wave and supersonic turbulent boundary-layer interactions near an expansion corner[J]. Computers and Fluids, 2020, 198:104385. [14] BABINSKY H, MAKINSON N J, MORGAN C E. Micro-vortex generator flow control for supersonic engine inlets:AIAA-2007-0521[R]. Reston:AIAA, 2007. [15] BABINSKY H, LI Y, FORD C W P. Micro-ramp control of supersonic oblique shock-wave/boundary-layer interactions[J]. AIAA Journal, 2009, 47(3):668-675. [16] GIEPMAN R H M, SCHRIJER F F J, VAN OUDHEUSDEN B W. Flow control of an oblique shock wave reflection with micro-ramp vortex generators:Effects of location and size[J]. Physics of Fluids, 2014, 26(6):066101. [17] WANG B, LIU W D, ZHAO Y X, et al. Experimental investigation of the micro-ramp based shock wave and turbulent boundary layer interaction control[J]. Physics of Fluids, 2012, 24:055110. [18] JUNGE W J, MANGIAVACCHI N, AKHAVAN R. Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations[J]. Physics of Fluids A:Fluid Dynamics, 1992, 4(8):1605-1607. [19] LAADHARI F, SKANDAJI L, MOREL R. Turbulence reduction in a boundary layer by a local spanwise oscillating surface[J]. Physics of Fluids,1994, 6(10):3218-3220. [20] CHOI K S. Near-wall structure of turbulent boundary layer with spanwise-wall oscillation[J]. Physics of Fluids, 2002, 14(7):2530-2541. [21] CHOI J, XU C X, SUNG H J. Drag reduction by spanwise wall oscillation in wall-bounded turbulent flows[J]. AIAA Journal, 2002, 40(5):840-850. [22] DHANAK M R, SI C. On reduction of turbulent wall friction through spanwise oscillations[J]. Journal of Fluid Mechanics, 1999, 383(1):175-196. [23] FANG J, LU L P, SHAO L. Heat transport mechanisms of low Mach number turbulent channel flow with spanwise wall oscillation[J]. Acta Mechanica Sinica, 2010, 26:391-399. [24] YAO J, HUSSAIN F. Supersonic turbulent boundary layer drag control using spanwise wall oscillation[J]. Journal of Fluid Mechanics, 2019, 880:388-429. [25] 童福林, 唐志共, 李新亮, 等. 压缩拐角激波与旁路转捩边界层干扰数值研究[J]. 航空学报, 2016, 37(12):3588-3604. TONG F L, TANG Z G, LI X L,et al. Numerical study of shock wave and bypass transitional boundary layer interaction in a supersonic compression ramp[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12):3588-3604(in Chinese). [26] PRIEBE S, WU M, MARTIN M P. Direct numerical simulation of a reflected shock wave turbulent boundary layer interaction[J]. AIAA Journal, 2009, 47(5):1173-1185. [27] PIROZZOLI S, GRASSO F, GATSKI T B. Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M=2.25[J]. Physics of Fluids, 2004, 16(3):530-545. [28] PIROZZOLI S, BERNARDINI M, GRASSO F. Direct numerical simulation of transonic shock/boundary layer interaction under conditions of incipient separation[J]. Journal of Fluid Mechanics, 2009, 657:361-393. [29] WU X, MOIN P. Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer[J]. Journal of Fluid Mechanics, 2009, 630:5-41. [30] PURTELL L P, KLEBANOFF P S, BUCKLEY F T. Turbulent boundary layer at low Reynolds number[J]. Physics of Fluids, 1981, 24(5):802-811. [31] ERM L P, JOUBERT P N. Low Reynolds number turbulent boundary layers[J]. Journal of Fluid Mechanics, 1991, 230:1-44. [32] PIROZZOLI S, BERNARDINI M, GRASSO F. Characterization of coherent vortical structures in a supersonic turbulent boundary layer[J]. Journal of Fluid Mechanics, 2008, 613:205-231. [33] BOOKEY P B, WYCKHAM C, SMITS A J. Experimental investigations of Mach 3 shock wave turbulent boundary layer interaction:AIAA-2005-4899[R]. Reston:AIAA, 2005. |