ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2020, Vol. 41 ›› Issue (5): 623344-623344.doi: 10.7527/S1000-6893.2019.23344
• Specical Topic of Numerical Optimization and Design of Aircraft Aerodynamic Shape • Previous Articles Next Articles
HAN Zhonghua, XU Chenzhou, QIAO Jianling, LIU Fei, CHI Jiangbo, MENG Guanyu, ZHANG Keshi, SONG Wenping
Received:
2019-08-06
Revised:
2019-08-25
Published:
2019-10-17
Supported by:
CLC Number:
HAN Zhonghua, XU Chenzhou, QIAO Jianling, LIU Fei, CHI Jiangbo, MENG Guanyu, ZHANG Keshi, SONG Wenping. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(5): 623344-623344.
[1] JAMESON A, VASSBERG J C. Computational fluid dynamics for aerodynamic design:Its current and future impact:AIAA-2001-0538[R]. Reston:AIAA, 2001. [2] SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:A path to revolutionary computational aerosciences:NASA/CR-2014-218178[R]. Washington, D.C.:NASA, 2014. [3] 周铸, 黄江涛, 黄勇, 等. CDF技术在航空工程领域的应用、挑战与发展[J]. 航空学报, 2017, 38(3):020891. ZHOU Z, HUANG J T, HUANG Y, et al. CFD technology in aeronautic engineering field:Applications, challenges and development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):020891(in Chinese). [4] 张淼, 刘铁军, 马涂亮, 等. 基于CFD方法的大型客机高速气动设计[J]. 航空学报, 2016, 37(1):244-254. ZHANG M, LIU T J, MA T L, et al. High speed aerodynamic design of large civil transporter based on CFD method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):244-254(in Chinese). [5] 白俊强, 雷锐午, 杨体浩, 等. 基于伴随理论的大型客机气动优化设计研究进展[J]. 航空学报, 2019, 40(1):522642. BAI J Q, LEI R W, YANG T H, et al. Progress of adjoint-based aerodynamic optimization design for large civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522642(in Chinese). [6] 高正红, 王超. 飞行器气动外形设计方法研究与进展[J]. 空气动力学学报, 2017, 35(4):516-528. GAO Z H, WANG C. Aerodynamic shape design methods for aircraft:Status and trends[J]. Acta Aerodynamica Sinica, 2017, 35(4):516-528(in Chinese). [7] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11):3197-3225. HAN Z H. Kriging surrogate model and its application to design optimization:A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3197-3225(in Chinese). [8] RUDER S. An overview of gradient descent optimization algorithms[EB/OL].(2016-01-19)[2019-08-06].http://sebastianruder.com/optimization-gradient-descent/index.html.[BFY] [9] WRIGHT S J,NOCEDAL J. Numerical optimization[M]. New York:Springer, 1999. [10] BYRD R H, HANSEN S L, NOCEDAL J, et al. A stochastic quasi-newton method for large-scale optimiza-tion[J]. SIAM Journal on Optimization, 2016, 26(2):1008-1031. [11] POWELL M J D. Restart procedures for the conjugate gradient method[J]. Mathematical Programming, 1977, 12(1):241-254. [12] KLAUS S, YUAN Y. Sequential quadratic programming methods[J]. Wiley Encyclopedia of Operations Research and Management Science, 2012, 154:147-224. [13] JAMESON A. Aerodynamic design via control theory[J]. Journal of Scientific Computing, 1988, 3(3):233-260. [14] JAMESON A. Optimum aerodynamic design using CFD and control theory:AIAA-1995-1729[R]. Reston:AIAA, 1995. [15] KENWAY G K W, MADER C A, HE P, et al. Effective adjoint approaches for computational fluid dynamics[J]. Progress in Aerospace Sciences, 2019, 110:100542. [16] LYU Z, KENWAY G K W, MARTINS J R R A. Aerodynamic shape optimization investigations of the common research model wing benchmark[J]. AIAA Journal. 2015, 53(4):968-985. [17] GILL P E, MURRAY W, SAUNDERS M A. SNOPT:An SQP algorithm for large-scale constrained optimiza-tion[J]. SIAM Review, 2005, 47(1):99-131. [18] MARTINS J R R A, HWANG J T. Review and unification of methods for computing derivatives of multidisciplinary computational models[J]. AIAA Journal, 2013, 51(11):2582-2599. [19] CHERNUKHIN O, ZINGG D W. Multimodality and global optimization in aerodynamic design[J]. AIAA Journal, 2013, 51(6):1342-1354. [20] JAISWAL N K. Heuristic optimization[M].Beilin Heidelberg:Springer, 1997:17-30. [21] LEE K, El-SHARKAWI M. Modern heuristic optimization techniques:Theory and applications to power syst-ems[M]. Piscataway:Wiley-IEEE Press, 2008. [22] GONG C L, GU L X. Genetic algorithm based global optimization algorithm used to solving system analysis of multidisciplinary optimization[C]//IEEE International Conference on Intelligent Computing and Intelligent Systems. Piscataway:IEEE Press, 2010:325-329. [23] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197. [24] DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I:Solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4):577-601. [25] VENTER G, SOBIESZCZANSKI-SOBIESKI J. Multidisciplinary optimization of a transport aircraft wing using particle swarm optimization[J]. Structural and Multidisciplinary Optimization, 2004, 26(1-2):121-131. [26] SHAN S, WANG G G. Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions[J]. Structural and Multidisciplinary Optimization, 2010, 41(2):219-241. [27] FORRESTER A I J, KEANE A J. Recent advances in surrogate-based optimization[J]. Progress in Aerospace Sciences, 2009, 45(1):50-79. [28] GIANNAKOGLOU K C. Design of optimal aerodynamic shapes using stochastic optimization methods and computational intelligence[J]. Progress in Aerospace Sciences, 2002, 38(1):43-76. [29] SCHMIT L A, FARSHI B. Some approximation concepts for structural synthesis[J]. AIAA Journal, 1974, 12(5):692-699. [30] GIUNTA A A, WATSON L T. A comparison of approximation modeling techniques:Polynomial versus interpolation models:AIAA-1998-4758[R]. Reston:AIAA, 1998. [31] SIMPSON T W, BOOKER A J, GHOSH D, et al. Approximation methods in multidisciplinary analysis and optimization:A panel discussion[J]. Structural and Multidisciplinary Optimization, 2004, 27(5):302-313. [32] SIMPSON T W, PEPLINSKI J, KOCH P N, et al. Metamodels for computer-based engineering design:Survey and recommendations[J]. Engineering with Computers, 2001, 17(2):129-150. [33] VIANA F A C, SIMPSON T W, BALABANOV V, et al. Metamodeling in multidisciplinary design optimization:How far have we really come?[J] AIAA Journal, 2014, 52(4):670-690. [34] KRIGE D G. A statistical approach to some basic mine valuation problems on the witwatersrand[J]. Journal of the Southern African Institute of Mining and Metallurgy, 1951, 52(6):119-139. [35] SACKS J, WELCH W J, MITCHELL T J, et al. Design and analysis of computer experiments[J]. Statistical Science, 1989, 4(4):409-435. [36] 穆雪峰, 姚卫星, 余雄庆, 等. 多学科设计优化中常用代理模型的研究[J]. 计算力学学报, 2005, 22(5):608-612. MU X F, YAO W X, YU X Q, et al. A survey of surrogate models used in MDO[J]. Chinese Journal of Computational Mechanics, 2005, 22(5):608-612(in Chinese). [37] HAN Z H, ZHANG K S. Surrogate-based optimizat-ion[M]. InTech Book, 2012:343-362. [38] FORRESTER A I J, SOBESTER A, KEANE A J. Engineering design via surrogate modeling:A practical guide[M]. Chichester:John Wiley & Sons, 2008. [39] VAVALLE A, QIN N. Iterative response surface based optimization scheme for transonic airfoil design[J]. Journal of Aircraft, 2005, 42(2):413-420. [40] KRISHNAMURTHY T. Response surface approximation with augmented and compactly supported radial basis functions:AIAA-2003-1748[R]. Reston:AIAA, 2003. [41] SOBESTER A, LEARY S J, KEANE A J. On the design of optimization strategies based on global response surface approximation models[J]. Journal of Global Optimization, 2005, 33(1):31-59. [42] YAO X, LIU Y. A new evolutionary system for evolving artificial neural networks[J]. IEEE Transactions on Neural Networks, 1997, 8(3):694-713. [43] VATANDAS E. Hybridizing genetic algorithm with artificial neural network in the aerodynamic optimization of the forward swept wing:AIAA-2010-2915[R]. Reston:AIAA, 2010. [44] BANDLER J W, BIERNACKI R, CHEN S H. Space mapping technique for electromagnetic optimization[J]. IEEE Transactions on Microwave Theory and Techniques, 1994, 42(12):2536-2544. [45] KHALATPOUR A, AMINEH R K, CHENG Q S, et al. Accelerating space mapping optimization with adjoint sensitivities[J]. IEEE Microwave and Wireless Components Letters, 2011, 21(6):280-282. [46] SMOLA A J, SCHOLKÖPF B. A tutorial on support vector regression[J]. Statistics and Computing, 2004, 14(3):199-222. [47] YUN Y, YOON M, NAKAYAMA H. Multi-objective optimization based on meta-modeling by using support vector regression[J]. Optimization and Engineering, 2009, 10(2):167-181. [48] WANG Q, MOIN P, IACCARINO G. A rational interpolation scheme with super-polynomial rate of convergence[J]. SIAM Journal of Numerical Analysis, 2010, 47(6):4073-4097. [49] WANG Q, MOIN P, IACCARINO G. A high-order multi-variate approximation scheme for arbitrary data sets[J]. Journal of Computational Physics, 2010, 229(18):6343-6361. [50] CRESTAUX T, MAI[DD(-*2/3] [HT8.]^TRE O L, MARTINEZ J M. Polynomial chaos expansion for sensitivity analysis[J]. Reliability Engineering and System Safety, 2009, 94(7):1161-1172. [51] NOVÁK L, NOVAK D. Polynomial chaos expansion for surrogate modelling:Theory and software[J]. Beton-und Stahlbetonbau, 2018, 113(2):27-32. [52] FORRESTER A I J, KEANE A J, BRESSLOFF N W. Design and analysis of noisy computer experiments[J]. AIAA Journal, 2006, 44(10):2331-2339. [53] LIU J, HAN Z H, SONG W P. Comparison of infill sampling criteria in Kriging-based aerodynamic optimizat-ion[C]//28th ICAS, 2012. [54] LIU J, SONG W P, HAN Z H, et al. Efficient aerodynamic shape optimization of transonic wings using a parallel infilling strategy and surrogate models[J]. Structural and Multidisciplinary Optimization, 2017, 55(3):925-943. [55] ZHANG Y, HAN Z H, ZHANG K S. Variable-fidelity expected improvement for efficient global optimization of expensive functions[J]. Structural and Multidisciplinary Optimization, 2018, 58(4):1431-1451. [56] JONES D R, SCHONLAU M, WELCH W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998, 13(4):455-492. [57] LOCATELLI M. Bayesian algorithms for one-dimensional global optimization[J]. Journal of Global Optimization, 1997, 10(1):57-76. [58] BATTITI R, BRUNATO M. The LION way:Machine learning plus intelligent optimization[M]//Create Space Independent Publishing Platform, 2014. [59] 陈海昕, 邓凯文, 李润泽. 机器学习技术在气动优化中的应用[J]. 航空学报, 2019, 40(1):522480. CHEN H X, DENG K W, LI R Z. Utilization of machine learning technology in aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522480(in Chinese). [60] QUEIPO N V, HAFTKA R T, SHYY W, et al. Surrogate-based analysis and optimization[J]. Progress in Aerospace Sciences, 2005, 41(1):1-28. [61] KOCH P N, SIMPSON T W, ALLEN J K, et al. Statistical approximations for multidisciplinary design optimization:The problem of the size[J]. Journal of Aircraft, 1999, 36(1):275-286. [62] 余雄庆. 飞机总体多学科设计优化的现状与发展方向[J]. 南京航空航天大学学报, 2008, 40(4):417-426. YU X Q. Multidisciplinary design optimization for aircraft conceptual and preliminary design:Status and directi-ons[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2008, 40(4):417-426(in Chinese). [63] SEVANT N E, BLOOR M I G, WILSON M J. Aerodynamic design of a flying wing using response surface methodology[J]. Journal of Aircraft, 2000, 37(4):562-569. [64] FERNANDEZ G, PARK C Y, KIM N H, et al. Issues in deciding whether to use multifidelity surrogates[J]. AIAA Journal, 2019, 57(5):2039-2054. [65] PARK C Y, HAFTKA R T, KIM N H. Remarks on multi-fidelity surrogates[J]. Structural and Multidisciplinary Optimization, 2017, 55(3):1029-1050. [66] HAFTKA R T, VILLANUEVA D, CHAUDHURI A. Parallel surrogate-assisted global optimization with expensive functions-a survey[J]. Structural and Multidisciplinary Optimization, 2016, 54(1):3-13. [67] VIANA F A C, HAFTKA R T. Surrogate-based optimization with parallel simulations using the probability of improvement:AIAA-2010-9392[R]. Reston:AIAA, 2010. [68] VIANA F A C, HAFTKA R T, WATSON L T. Efficient global optimization algorithm assisted by multiple surrogate techniques[J]. Journal of Global Optimization, 2013, 56(2):669-689. [69] BOUHLEL M A, MARTINS J R R A. Gradient-enhanced Kriging for high-dimensional problems[J]. Engineering with Computers, 2018(1):1-17. [70] BOUHLEL M A, HWANG J T, BARTOLI N, et al. A python surrogate modeling framework with derivatives[J]. Advances in Engineering Software, 2019, 135:102662. [71] LI J C, BOUHLEL M A, MARTINS J R R A. A data-based approach for fast airfoil analysis and optimization:AIAA-2018-1383[R]. Reston:AIAA, 2018. [72] MADSEN M H A, ZAHLE F, SØRENSEN N N, et al. Multipoint high-fidelity CFD-based aerodynamic shape optimization of a 10 MW wind turbine[J]. Wind Energy Science, 2019, 4:163-192. [73] GRAY J S, HWANG J T, MARTINS J R R A, et al. OpenMDAO:An open-source framework for multidisciplinary design, analysis, and optimization[J]. Structural and Multidisciplinary Optimization, 2019, 59(4):1075-1104. [74] HE X L, LI J C, MADER C, et al. Robust aerodynamic shape optimization-From a circle to an airfoil[J]. Aerospace Science and Technology, 2019, 87:48-61. [75] BONS N P, HE X L, MADER C, et al. Multimodality in aerodynamic wing design optimization[J]. AIAA Journal, 2019, 57(3):1004-1018. [76] CHEN S, LYU P Z J, KENWAY G, et al. Aerodynamic shape optimization of the common research model wing-body-tail configuration[J]. Journal of Aircraft, 2016, 53(1):276-293. [77] DU X S, REN J, LEIFSSON L. Aerodynamic inverse design using multifidelity models and manifold mapping[J]. Aerospace Science and Technology, 2018, 85:371-385. [78] THELEN A, LEIFSSON L, SHARMA A, et al. Variable-fidelity shape optimization of dual-rotor wind turbines[J]. Engineering Computations, 35(7):2514-2542. [79] AMRIT A, LEIFSSON L, KOZIEL S. Multi-fidelity aerodynamic design trade-off exploration using point-by-point pareto set identification[J]. Aerospace Science and Technology, 2018, 79:399-412. [80] LEIFSSON L, KOZIEL S, OWEN D R J. Adaptive response prediction for aerodynamic shape optimization[J]. Engineering Computations, 2017, 34(5):1485-1500. [81] AMRIT A, LEIFSSON L, KOZIEL S. Design strategies for multi-objective optimization of aerodynamic surfaces[J]. Engineering Computations, 2017, 34(5):1724-1753. [82] AMRIT A, LEIFSSON L, KOZIEL S T, et al. Efficient multi-objective aerodynamic optimization by design space dimension reduction and co-Kriging:AIAA-2016-3515[R]. Reston:AIAA, 2016. [83] KOZIEL S, LEIFSSON L. Simulation-driven design by knowledge-based response correction techniques[M]. Switzerland:Springer International Publishing Press, 2016. [84] REN J, LEIFSSON L, KOZIEL S, et al. Multi-fidelity aerodynamic shape optimization using manifold mapping:AIAA-2016-0419[R]. Reston:AIAA, 2016. [85] LEIFSSON L, KOZIEL S, TESFAHUNEGN Y A. Multiobjective aerodynamic optimization by variable-fidelity models and response surface surrogates[J]. AIAA Journal, 2016, 54(2):531-541. [86] LEIFSSON L, KOZIEL S. Aerodynamic shape optimization by variable-fidelity computational fluid dynamics models:A review of recent progress[J]. Journal of Computational Science, 2015, 10:45-54. [87] LEIFSSON L, KOZIEL S. Wing aerodynamic shape optimization by space mapping[J]. Advances in Intelligent Systems and Computing, 2014, 256:319-332. [88] KOZIEL S, LEIFSSON L. Surrogate-based aerodynamic shape optimization by variable-resolution models[J]. AIAA Journal, 2013, 51(1):94-106. [89] KOZIEL S, LEIFSSON L. Statistical-analysis-based setup of physics-based surrogates and optimization process resolution for variable-fidelity aerodynamic design:AIAA-2017-3328[R]. Reston:AIAA, 2017. [90] KOZIEL S, LEIFSSON L. Multi-level surrogate-based airfoil shape optimization:AIAA-2013-0778[R]. Reston:AIAA, 2013. [91] LEIFSSON L, KOZIEL S. Variable-resolution shape optimization:Low-fidelity model setup and algorithm scalability:AIAA-2012-5604[R]. Reston:AIAA, 2012. [92] KOZIEL S, LEIFSSON L. Multi-level CFD-based airfoil shape optimization with automated low-fidelity model selection[J]. Procedia Computer Science, 2013, 18(1):889-898. [93] LEIFSSON L, KOZIEL S. Multi-fidelity design optimization of transonic airfoils using shape-preserving response prediction[J]. Journal of Computational Science, 2010, 1(2):98-106. [94] KOZIEL S, LEIFSSON L. Surrogate-based modeling and optimization:Applications in engineering[M]. Heidelberg:Springer Nature Press, 2013. [95] KRAMER B, MARQUES A, PEHERSTORFER B, et al. Multifidelity probability estimation via fusion of estimators[J]. Journal of Computational Physics, 2019, 392:385-402. [96] PEHERSTORFER B, WILLCOX K E, GUNZBURGER M. Survey of multifidelity methods in uncertainty propagation, inference, and optimization[J]. SIAM Review, 2018, 60(3):550-591. [97] CHAUDHURI A, LAM R, WILLCOX K E. Multifidelity uncertainty propagation via adaptive surrogates in coupled multidisciplinary systems[J]. AIAA Journal, 2018, 56(1):235-249. [98] PEHERSTORFER B, KRAMER B, WILLCOX K E. Combining multiple surrogate models to accelerate failure probability estimation with expensive high-fidelity models[J]. Journal of Computational Physics, 2017, 341:61-75. [99] PEHERSTORFER B, CUI T, MARZOUK Y, et al. Multifidelity importance sampling[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 300:490-509. [100] NG L W T, WILLCOX K E. Multifidelity approaches for optimization under uncertainty[J]. International Journal for Numerical Methods in Engineering, 2014, 100(10):746-772. [101] MARCH A, WILLCOX K E. Constrained multifidelity optimization using model calibration[J]. Structural and Multidisciplinary Optimization, 2012, 46:93-109. [102] ROBINSON T D, ELDRED M S, WILLCOX K E, et al. Surrogate-based optimization using multifidelity models with variable parameterization and corrected space mapping[J]. AIAA Journal, 2008, 46(11):2814-2822. [103] ROBINSON T D, WILLCOX K E, ELDRED M S, et al. Multifidelity optimization for variable-complexity design:AIAA-2006-7114[R]. Reston:AIAA, 2006. [104] SONG W B, KEANE A J. Surrogate-based aerodynamic shape optimization of a civil aircraft engine nacelle[J]. AIAA Journal, 2007, 45(10):2565-2574. [105] ONG Y S, NAIR P B, KEANE A J. Evolutionary optimization of computationally expensive problems via surrogate modeling[J]. AIAA Journal, 2003, 41(4):687-696. [106] KEANE A J. Wing optimization using design of experiment, response surface, and data fusion methods[J]. Journal of Aircraft, 2003, 40(4):741-750. [107] LEARY S J, BHASKAR A, KEANE A J. A knowledge-based approach to response surface modeling in multifidelity optimization[J]. Journal of Global Optimization, 2003, 26(3):297-319. [108] TOAL D J J, KEANE A J. Efficient multipoint aerodynamic design optimization via coKriging[J]. Journal of Aircraft, 2011, 48(5):1685-1695. [109] KEANE A J. CoKriging for robust design optimization[J]. AIAA Journal, 2012, 50(11):2351-2364. [110] KUYA Y, TAKEDA K, ZHANG X, et al. Multifidelity surrogate modeling of experimental and computational aerodynamic data sets[J]. AIAA Journal, 2011, 49(2):289-298. [111] AHMED M Y M, QIN N. Surrogate-based aerodynamic design optimization:Use of surrogates in aerodynamic design optimization[C]//13th International Conference on Aerospace Sciences and Aviation Technology, 2009. [112] 邓枫, 覃宁, 伍贻兆. 基于并行EGO算法的激波控制鼓包减阻优化[J]. 南京航空航天大学学报, 2013, 45(4):485-490. DENG F, QIN N, WU Y Z. Shock control bump optimization for drag reduction using parallel efficient global optimization algorithm[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2013, 45(4):485-490(in Chinese). [113] AHMED M Y M, QIN N. Surrogate-based multi-objective aerothermodynamic design optimization of hypersonic spiked bodies[J]. AIAA Journal, 2012, 50(4):797-810. [114] AHMED M Y M, QIN N. Metamodels for aerothermodynamic design optimization of hypersonic spiked blunt bodies[J]. Aerospace Science and Technology, 2010, 14(5):364-376. [115] REIST T A, ZINGG D W, RAKOWITZ M, et al. Multifidelity optimization of hybrid wing-body aircraft with stability and control requirements[J]. Journal of Aircraft, 2018, 56(2):442-456. [116] KHOSRAVI S, ZINGG D W. Aerostructural optimization of drooped wings[J]. Journal of Aircraft, 2017, 55(3):1261-1268. [117] CHAU T, ZINGG D W. Aerodynamic shape optimization of a box-wing regional aircraft based on the reynolds-averaged navier-stokes equations:AIAA-2017-3258[R]. Reston:AIAA, 2017. [118] ZHANG Z J, ZINGG D W. Efficient monolithic solution algorithm for high-fidelity aerostructural analysis and optimization[J]. AIAA Journal, 2018, 56(3):1251-1265. [119] RASHAD R, ZINGG D W. Aerodynamic shape optimization for natural laminar flow using a discrete-adjoint approach[J]. AIAA Journal, 2016, 54(11):3321-3337. [120] REIST T A, ZINGG D W. High-fidelity aerodynamic shape optimization of a lifting-fuselage concept for regional aircraft[J]. Journal of Aircraft, 2017, 54(3):1085-1097. [121] REIST T A, ZINGG D W, Aerodynamic shape optimization of a blended-wing-body regional transport for a short range mission:AIAA-2013-2414[R]. Reston:AIAA, 2013. [122] LEUNG T M, ZINGG D W. Aerodynamic shape optimization of wings using a parallel Newton-Krylov approach[J]. AIAA Journal, 2012, 50(3):540-550. [123] WANG X J, WANG G G, SONG B W, et al. A novel evolutionary sampling assisted optimization method for high dimensional expensive problems[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(5):815-827. [124] SAFARI A, YOUNIS A, WANG G G, et al. Development of a metamodel assisted sampling approach to aerodynamic shape optimization problems[J]. Journal of Mechanical Science and Technology, 2015, 29(5):2013-2024. [125] LONG T, WU D, GUO X S, et al. Efficient adaptive response surface method using intelligent space exploration strategy[J]. Structural and Multidisciplinary Optimization, 2015, 51(6):1335-1362. [126] SHAN S Q, WANG G G. Metamodeling for high dimensional simulation-based design problems[J]. Journal of Mechanical Design, 2010, 132(5):1-11. [127] WANG G G, SHAN S Q. Review of metamodeling techniques in support of engineering design optimization[J]. Journal of Mechanical Design, 2007, 129(4):370-380. [128] NAMURA N, SHIMOYAMA K, OBAYASHI S, et al. Multipoint design optimization of vortex generators on transonic swept wings[J]. Journal of Aircraft, 2019, 56(4):1291-1302. [129] NAMURA N, SHIMOYAMA K, OBAYASHI S. Expected improvement of penalty-based boundary intersection for expensive multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(6):898-913. [130] NAMURA N, SHIMOYAMA K, OBAYASHI S. Kriging surrogate model with coordinate transformation based on likelihood and gradient[J]. Journal of Global Optimization, 2017, 68(4):827-849. [131] NAMURA N, OBAYASHI S, JEONG S. Efficient global optimization of vortex generators on a supercritical infinite wing[J]. Journal of Aircraft, 2016, 53(6):1670-1679. [132] LUO C, SHIMOYAMA K, OBAYASHI S. A study on many-objective optimization using the Kriging-surrogate-based evolutionary algorithm maximizing expected hypervolume improvement[J]. Mathematical Problems in Engineering, 2015, 4:1-15. [133] NAMURA N, SHIMOYAMA K, JEONG S, et al. Kriging/RBF-hybrid response surface methodology for highly nonlinear functions[J]. Journal of Computational Science and Technology, 2012, 6(3):81-96. [134] PALAR P, SHIMOYAMA K. On the accuracy of Kriging model in active subspaces:AIAA-2018-0913[R]. Reston:AIAA, 2018. [135] 聂雪媛, 刘中玉, 杨国伟. 基于Kriging代理模型的飞行器结构刚度气动优化设计[J]. 气体物理, 2017, 2(2):8-16. NIE X Y, LIU Z Y, YANG G W. Aircraft structure stiffness and aerodynamic optimization design based on Kriging surrogate model[J]. Physics of Gases, 2017, 2(2):8-16(in Chinese). [136] 姚拴宝, 郭迪龙, 孙振旭, 等. 基于Kriging代理模型的高速列车头型多目标优化设计[J]. 中国科学:技术科学, 2013, 43(2):186-200. YAO S B, GUO D L, SUN Z X, et al. Multi-objective optimization of the streamlined head of high-speed trains based on the Kriging model[J]. Science China Technological Sciences, 2013, 43(2):186-200(in Chinese). [137] YANG G W, CHEN D W, CUI K. Response surface technique for static aeroelastic optimization on a high-aspect-ratio wing[J]. Journal of Aircraft, 2009, 46(4):1444-1450. [138] LI R Z, DENG K W, ZHANG Y F, et al. Pressure distribution guided supercritical wing optimization[J]. Chinese Journal of Aeronautics, 2018, 31(9):49-61. [139] 李润泽, 张宇飞, 陈海昕. "人在回路"思想在飞机气动优化设计中演变与发展[J]. 空气动力学学报, 2017, 35(4):529-543. LI R Z, ZHANG Y F, CHEN H X. Evolution and development of "man-in-loop" in aerodynamic optimization design[J]. Acta Aerodynamica Sinica, 2017, 35(4):529-543(in Chinese). [140] ZHAO T, ZHANG Y F, CHEN H X, et al. Supercritical wing design based on airfoil optimization and 2.75D transformation[J]. Aerospace Science and Technology, 2016, 56:168-182. [141] DENG K W, CHEN H X. A hybrid aerodynamic optimization algorithm based on differential evolution and RBF response surface:AIAA-2016-3671[R]. Reston:AIAA, 2016. [142] ZHAO T, ZHANG Y F, CHEN H X. Multi-objective aerodynamic-structural optimization of supercritical wing of wide body aircraft:AIAA-2016-1555[R]. Reston:AIAA, 2016. [143] ZHANG Y F, FANG X M, CHEN H X, et al. Supercritical natural laminar flow airfoil optimization for regional aircraft wing design[J]. Aerospace Science and Technology, 2015, 43:152-164. [144] ZHAO T, ZHANG Y F, CHEN H X. Multi-objective aerodynamic optimization of supercritical wing with substantial pressure constraints:AIAA-2015-0763[R]. Reston, VA:AIAA, 2015. [145] 赵童, 张宇飞, 陈海昕, 等. 面向三维机翼性能的超临界翼型优化设计方法[J]. 中国科学:物理学力学天文学, 2015, 45(10):84-96. HAO T, ZHANG Y F, CHEN H X, et al. Aerodynamic optimization method of supercritical airfoil geared to the performance of swept and tapered wing[J]. Scientia Sinica Physica, Mechanica and Astronomica, 2015, 45(10):84-96(in Chinese). [146] 张宇飞, 陈海昕, 符松, 等. 一种实用的运输类飞机机翼/发动机短舱一体化优化设计方法[J]. 航空学报, 2012, 33(11):1993-2001. ZHANG Y F, CHEN H X, FU S, et al. A practical optimization design method for transport aircraft wing/nacelle integration[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11):1993-2001(in Chinese). [147] 李润泽, 张宇飞, 陈海昕. 针对超临界翼型气动修型策略的强化学习研究[J]. 航空学报, 2020,41(5):623409. LI R Z, ZHANG Y F, CHEN H X. Study of reinforcement learning method for supercritical airfoil aerodynamic design[J]. Acta Aeronautica et Astronautica Sinica, 2020,41(5):623409(in Chinese). [148] 余永刚, 黄勇, 周铸, 等. 飞翼布局气动外形设计[J]. 空气动力学学报, 2017, 35(6):832-836, 878. YU Y G, HUANG Y, ZHOU Z, et al. Aerodynamic design of a flying-wing aircraft[J]. Acta Aerodynamica Sinica, 2017, 35(6):832-836, 878(in Chinese). [149] 郑传宇, 黄江涛, 周铸, 等. 飞翼翼型高维目标空间多学科综合优化设计[J]. 空气动力学学报, 2017, 35(4):587-597. ZHENG C Y, HUANG J T, ZHOU Z, et al. Multidisciplinary optimization design of high dimensional target space for flying wing airfoil[J]. Acta Aerodynamica Sinica, 2017, 35(4):587-597(in Chinese). [150] 黄江涛, 刘刚, 周铸, 等. 基于离散伴随方程求解梯度信息的若干问题研究[J]. 空气动力学学报, 2017, 35(4):554-562. HUANG J T, LIU G, ZHOU Z, et al. Investigation of gradient computation based on discrete adjoint method[J]. Acta Aerodynamica Sinica, 2017, 35(4):554-562(in Chinese). [151] HUANG J T, ZHOU Z, GAO Z H, et al. Aerodynamic multi-objective integrated optimization based on principal component analysis[J]. Chinese Journal of Aeronautics, 2017, 30(4):1336-1348. [152] HUANG J T, GAO Z H, ZHOU Z, et al. An improved adaptive sampling and experiment design method for aerodynamic optimization[J]. Chinese Journal of Aeronautics, 2015, 28(5):1391-1399. [153] WANG Q, ZHAO Q J. Rotor airfoil profile optimization for alleviating dynamic stall characteristics[J]. Aerospace Science and Technology, 2018, 72:502-515. [154] WANG Q, ZHAO Q J, WU Q. Aerodynamic shape optimization for alleviating dynamic stall characteristics of helicopter rotor airfoil[J]. Chinese Journal of Aeronautics, 2015, 28(2):346-356. [155] JIANG X W, ZHAO Q J, ZHAO G Q, et al. Integrated optimization analyses of aerodynamic/stealth characteristics of helicopter rotor based on surrogate model[J]. Chinese Journal of Aeronautics, 2015, 28(3):737-748. [156] ZHAO G Q, ZHAO Q J. Dynamic stall control optimization of rotor airfoil via variable droop leading-edge[J]. Aerospace Science and Technology, 2015, 43:406-414. [157] 朱正, 招启军. 低HSI噪声旋翼桨尖外形优化设计方法[J]. 航空学报, 2015, 36(5):1442-1452. ZHU Z, ZHAO Q J. Optimization design method for rotor blade-tip shape with low HSI noise characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1442-1452(in Chinese). [158] SUN L, AN W, LIU X J, et al. On developing data-driven turbulence model for DG solution of RANS[J]. Chinese Journal of Aeronautics, 2019, 32(8):1869-1884. [159] LYU H Q, XU Y D, GAO Y K, et al. A high-order discontinuous galerkin method for the two-dimensional time-domain Maxwell's equations on curved mesh[J]. Advances in Applied Mathematics and Mechanics, 2016, 8(1):104-116. [160] 吴宽展, 刘学军, 吕宏强. 基于多输出高斯过程的超临界翼型优化[J]. 空气动力学学报, 2015, 33(6):728-732. WU K Z, LIU X J, LYU H Q. A supercritical airfoil design based on multi-output surrogate model[J]. Acta Aerodynamica Sinica, 2015, 33(6):728-732(in Chinese). [161] LIU Z J, LIU X J, CAI X Y. A new hybrid aerodynamic optimization framework based on differential evolution and invasive weed optimization[J]. Chinese Journal of Aeronautics, 2018, 31(7):1437-1448. [162] CHAI X, YU X Q, WANG Y. Multipoint optimization on fuel efficiency in conceptual design of wide-body aircraft[J]. Chinese Journal of Aeronautics, 2018, 31(1):99-106. [163] 邢宇, 罗东明, 余雄庆. 超临界层流翼型优化设计策略[J]. 北京航空航天大学学报, 2017, 43(8):1616-1624. XIN Y, LUO D M, YU X Q. Optimization strategy of supercritical laminar flow airfoil design[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(8):1616-1624(in Chinese). [164] YU X Q, DU X P. Reliability-based multidisciplinary optimization for aircraft wing design[J]. Structure and Infrastructure Engineering, 2006, 2(3-4):277-289. [165] WANG Y, YIN H L, ZHANG S, et al. Multi-objective optimization of aircraft design for emission and cost reductions[J]. Chinese Journal of Aeronautics, 2014, 27(1):52-58. [166] 胡婕, 王如华, 王稳江, 等. 客机机翼气动/结构多学科优化方法[J]. 南京航空航天大学学报, 2012, 44(4):458-463. HU J, WANG R H, WANG W J, et al. Multidisciplinary optimization of transport wing aerodynamic/structural integrated design[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2012, 44(4):458-463(in Chinese). [167] 胡添元, 余雄庆. 多学科设计优化在非常规布局飞机总体设计中的应用[J]. 航空学报, 2011, 32(1):117-127. HU T Y, YU X Q. Preliminary design of unconventional configuration aircraft using multidisciplinary design optimization[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(1):117-127(in Chinese). [168] HU T Y, YU X Q. Aerodynamic/stealthy/structural multidisciplinary design optimization of unmanned combat air vehicle[J]. Chinese Journal of Aeronautics, 2009, 22(4):380-386. [169] WANG S, SUN G, CHEN W, et al. Database self-expansion based on artificial neural network:An approach in aircraft design[J]. Aerospace Science and Technology, 2017, 72:77-83. [170] TAO J, SUN G, SI J Z, et al. A robust design for a winglet based on NURBS-FFD method and PSO algorithm[J]. Aerospace Science and Technology, 2017, 70:568-577. [171] TAO J, SUN G. An artificial neural network approach for aerodynamic performance retention in airframe noise reduction design of a 3D swept wing model[J]. Chinese Journal of Aeronautics, 2016, 29(5):1213-1225. [172] TAO J, SUN G. A novel optimization method for maintaining aerodynamic performances in noise reduction design[J]. Aerospace Science and Technology, 2015, 43:415-422. [173] SUN G, SUN Y J, WANG S Y. Artificial neural network based inverse design:Airfoils and wings[J]. Aerospace Science and Technology, 2015, 42:415-428. [174] 陶俊, 孙刚, 徐康乐. 基于人工神经网络的缝翼凹槽填充降噪设计, 空气动力学学报, 2015, 33(4):515-522. TAO J. SUN G, XU K L. Slat cove filler design for noise reduction based on artificial neural network[J]. Acta Aerodynamica Sinica, 2015, 33(4):515-522(in Chinese). [175] JIN X, SUN G, LIU C J. Neural network and data mining method in aerodynamic optimization[J]. Applied Mechanics and Materials, 2011, 52-54:1421-1426. [176] SONG X G, SUN G Y, LI G Y, et al. Crashworthiness optimization of foam-filled tapered thin-walled structure using multiple surrogate models[J]. Structural and Multidisciplinary Optimization, 2013, 47(2):221-231. [177] SONG X G, ZHANG J, KANG S H, et al. Surrogate-based analysis and optimization for the design of heat sinks with jet impingement[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2013, 4(3):429-437. |
[1] | Qi LIU, Yongjie SHI, Zhiyuan HU, Guohua XU. Parameter effects analysis on aerodynamic and aeroacoustic characteristics of coaxial rigid rotor [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 528856-528856. |
[2] | Zhuangzhuang CUI, Xin YUAN, Guoqing ZHAO, Simeng JING, Qijun ZHAO. Influence of control strategy on forward flight performance of coaxial rigid rotor high⁃speed helicopters [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529256-529256. |
[3] | Jiaqi LIU, Rongqian CHEN, Jinhua LOU, Xu HAN, Hao WU, Yancheng YOU. Aerodynamic shape optimization of high-speed helicopter rotor airfoil based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529828-529828. |
[4] | Yuhan LI, Baoyu YANG, Yinong WU, Qiang ZHANG, Xiao TANG. Research on parameters correction method for thermal model of satellite optomechanical load [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 628814-628814. |
[5] | Shusheng CHEN, Cong FENG, Zhaokang ZHANG, Ke ZHAO, Xinyang ZHANG, Zhenghong GAO. Aerodynamic design of wide-speed-range waverider-wing configuration based on global & gradient optimization method [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629596-629596. |
[6] | Jing YU, Anlin JIANG, Liang LIU, Xiaojun WU, Yewei GUI, Shenshen LIU. PCA aerodynamic geometry parametrization method [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 129125-129125. |
[7] | Fengxia LU, Kun WEI, Chunlei WANG, Heyun BAO, Rupeng ZHU. Accessibility of metal particles in three-phase flow of helicopter intermediate gearbox [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 128524-128524. |
[8] | Jiong REN, Gang WANG, Guodong HU, Xiaolu SHI. Adaptive finite volume method with Walsh basis functions [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 127444-127444. |
[9] | Chunpeng LI, Zhansen QIAN, Xiasheng SUN. Trailing edge deformation matrix aerodynamic design for long-range civil aircraft variable camber wing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 127335-127335. |
[10] | Huan ZHAO, Zhenghong GAO, Lu XIA. Novel multi-fidelity surrogate model assisted many-objective optimization method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 126962-126962. |
[11] | Wenbo CAO, Yilang LIU, Weiwei ZHANG. Accelerated convergence method for fluid dynamics solvers based on reduced⁃order model and gradient optimization [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 127090-127090. |
[12] | Huan ZHAO, Zhenghong GAO, Lu XIA. Aerodynamic shape design optimization method based on novel high⁃dimensional surrogate model [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126924-126924. |
[13] | Zhiyang ZHENG, Yang ZHANG, Zhao ZHANG, Baohai WU, Ying ZHANG. Layout optimization of auxiliary support for thin-walled blade based on GA-SVR [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(4): 426805-426805. |
[14] | Ting YU, Luyi LI, Yushan LIU, Zeming CHANG. Efficient Bayesian updating method under observation uncertainty and its application in wing structure [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(24): 228592-228592. |
[15] | Sihua LIU, Zhanying WANG, Lijian LI, Mindi ZHANG. Influence of nose shapes on high-speed water entry stability of projectile [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 528437-528437. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341