[1] |
HUMA N, ASIF M. An optimal dynamic threat evaluation and weapon scheduling technique[J]. Knowledge-Based Systems, 201, 23(3):337-342.
|
[2] |
曾守桢, 穆志民. 基于Zhenyuan积分的直觉模糊多属性决策方法[J]. 控制与工程, 2018, 33(3):542-548. ZENG S Z, MU Z M. Method based on Zhenyuan integral for intuitionistic fuzzy multiple attribute decision making[J]. Control and Decision, 2018, 33(3):542-548(in Chinese).
|
[3] |
FENG J F, ZHANG Q, HU J H, et al. Dynamic assessment method of air target threat based on improved GIFSS[J]. Journal of Systems Engineering and Electronics, 2019, 30(3):525-534.
|
[4] |
李闯, 端木京顺, 雷英杰, 等. 基于认知图和直觉模糊推理的态势评估方法[J]. 系统工程与电子技术, 2012, 34(10):2064-2068. LI C, DUANMU J S, LEI Y J, et al. Situation assessment based on cognitive maps and intuitionistic fuzzy reasoning[J]. Systems Engineering and Electronics, 2012, 34(10):2064-2068(in Chinese).
|
[5] |
XU Y, MIU X. Multi-attribute decision making method for air target threat evaluation based on intuitionistic fuzzy sets[J]. Journal of Systems Engineering and Electronics, 2012, 23(6):891-897.
|
[6] |
夏博龄, 贺正洪, 雷英杰. 基于直觉模糊推理的威胁评估改进算法[J]. 计算机工程, 2009, 35(16):195-197. XIA B L, HE Z H, LEI Y J. Improved algorithm of threat assessment based on intuitionistic fuzzy reasoning[J]. Computer Engineering, 2009, 35(16):195-197(in Chinese).
|
[7] |
李卫忠, 李志鹏, 江洋, 等. 混沌海豚群优化灰色神经网络的空中目标威胁评估[J]. 控制与决策, 2018,33(11):1997-2003. LI W Z, LI Z P, JIANG Y, et al. Air-targets threat assessment using grey neural network optimized by chaotic dolphin swarm algorithm[J]. Control and Decision, 2018, 33(11):1997-2003(in Chinese).
|
[8] |
BRYNIELSSON J, ARNBORG S. Bayesian games for threat prediction and situation analysis[C]//7th International Conference on Information Fusion, 2004:1125-1132.
|
[9] |
AZIMIRAD E, HADDADNIA J. Target threat assessment using fuzzy sets theory[J]. International Journal of Advances in Intelligent Informatics, 2015, 1(2):57-74.
|
[10] |
CHEN D F, FENG Y, LIU Y X. Threat assessment for air defense operations based on intuitionistic fuzzy logic[J]. Procedia Engineering, 2012, 29(4):3302-3306.
|
[11] |
MA S D, ZHANG H Z, YANG G Q. Target threat level assessment based on cloud model under fuzzy and uncertain conditions in air combat simulation[J]. Aerospace Science and Technology, 2017, 67:49-53.
|
[12] |
QU C W, HE Y. A method of threat assessment using multiple attribute decision making[C]//6th International Conference on Signal Processing, 2002:1091-1095.
|
[13] |
LIANG Q, CHENG X. Knowledge-based ubiquitous and persistent sensor networks for threat assessment[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3):1060-1069.
|
[14] |
王俊, 姜长生. 基于LSRBF神经网络的空战目标威胁评估[J].电光与控制, 2007, 14(4):43-48. WANG J, JIANG C S. Target threat assessment based on LSRBF neural network for air combat[J]. Electronic Optics & Control, 2007, 14(4):43-48(in Chinese).
|
[15] |
邱浪波, 刘作良, 刘明. 一种应用神经网络技术的威胁估计算法[J]. 空军工程大学学报(自然科学版), 2002,3(6):25-28. QIU L B, LIU Z L, LIU M. A threat assessment algorithm by using the neural network techniques[J]. Journal of Air Force Engineering University:Natural Science Edition, 2002, 3(6):25-28(in Chinese).
|
[16] |
王向华, 覃征, 刘宇, 等. 径向基神经网络解决威胁排序问题[J]. 系统仿真学报, 2004, 16(7):1576-1579. WANG X H, QIN Z, LIU Y, et al. RBF neural network for threat sequencing[J]. Journal of System Simulation, 2004, 16(7):1576-1579(in Chinese).
|
[17] |
郭辉, 徐浩军, 刘凌. 基于回归型支持向量机的空战目标威胁评估[J]. 北京航空航天大学学报, 2010, 36(1):123-126. GUO H, XU H J, LIU L. Target threat assessment of air combat based on support vector machines for regression[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(1):123-126(in Chinese).
|
[18] |
王改革, 郭立红, 段红, 等. 基于萤火虫算法优化BP神经网络的目标威胁估计[J]. 吉林大学学报(工学版), 2013, 43(4):1064-1069. WANG G G, GUO L H, DUAN H, et al. Target threat assessment using glowworm swarm optimization and BP neural network[J]. Journal of Jilin University (Engineering and Technology Edition), 2013, 43(4):1064-1069(in Chinese).
|
[19] |
罗艳春, 郭立红, 姜晓莲, 等. 基于模糊神经网络的空中目标威胁评估[J]. 微计算机信息, 2007, 34(23):268-270. LUO Y C, GUO L H, JIANG X L, et al. Threat assessment for aerial target based on fuzzy neural network[J]. Microcomputer Information, 2007, 34(23):268-270(in Chinese).
|
[20] |
LAM H K, LAUBER J. Membership-function-dependent stability analysis of fuzzy-model-based control systems using fuzzy Lyapunov functions[J]. Informantion Science, 2013, 232(20):253-266.
|
[21] |
HUANG G B, WANG D H, LAN Y. Extreme learning machines:A survey[J]. International Journal of Machine Learning and Cybernetics, 2011, 2(2):107-122.
|
[22] |
LAW A, GHOSG A. Multi-label classification using a cascade of stacked autoencoder and extreme learning machines[J]. Neurocomputing, 2019, 358:222-234.
|
[23] |
赵春晖, 胡春梅, 石红. 采用选择性分段PCA算法的高光谱图像异常检测[J]. 哈尔滨工程大学学报(英文版), 2011, 32(1):109-113. ZHAO C H, HU C M, SHI H. Anomaly detection for a hyperspectral image by using a selective section principal component analysis algorithm[J]. Journal of Harbin Engineering University, 2011, 32(1):109-113(in Chinese).
|
[24] |
吕伏, 梁冰, 孙维吉, 等. 基于主成分回归分析法的回采工作面瓦斯涌出量预测[J]. 煤炭学报, 2012, 37(1):113-116. LV F, LIANG B, SUN W J, et al. Gas emission quantity prediction of working face based on principal component regression analysis method[J]. Journal of China Coal Society, 2012, 37(1):113-116(in Chinese).
|
[25] |
HUANG G B. An insight into extreme learning machines:random neurons, random features and Kernels[J]. Cognitive Computation, 2014, 6(3):376-390.
|
[26] |
HUANG G B, ZHU Q Y, SIEW C K. Real-time learning capability of neural networks[J]. Neurocomputing, 2006, 70:863-878.
|
[27] |
LAN Y, SOH Y C, HUANG G B. Ensemble of online sequential extreme learning machine[J]. Neurocomputing, 2009, 72(13):3391-3395.
|
[28] |
HUANG G B, DING X J, ZHOU H M. Optimization method based extreme learning machine for classification[J]. Neurocomputing, 2010, 74(1):155-163.
|
[29] |
LUO X, CHANG X H, BAN X J. Regression and classification using extreme learning machine based on L-1-norm and L-2-norm[J]. Neurocomputing, 2016, 174:179-186.
|
[30] |
QIN Q, FENG Y W, LI F. Structural reliability analysis using enhanced cuckoo search algorithm and artificial neural network[J]. Journal of Systems Engineering and Electronics, 2018, 29(6):1317-1326.
|
[31] |
QUAN H,SRINIVASAN D, KHOSRAVI A. Short-term load and wind power forecasting using neural network-based prediction intervals[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(2):303-315.
|
[32] |
顾佼佼, 刘卫华. 基于攻击区和杀伤概率的视距内空战态势评估[J]. 系统工程与电子技术, 2015, 37(6):1306-1312. GU J J, LIU W H. WVR air combat situation assessment model based on weapon engagement zone and kill probability[J]. Systems Engineering and Electronics, 2015, 37(6):1306-1312(in Chinese).
|
[33] |
徐西蒙, 杨任农, 符颖, 等. 基于ELM_AdaBoost强预测器的空战目标威胁评估[J]. 系统工程与电子技术, 2018, 40(8):1760-1768. XU X M, YANG R N, FU Y, et al. Target threat assessment in air combat based on ELM_AdaBoost strong predictor[J].Systems Engineering and Electronics, 2018, 40(8):1760-1768(in Chinese).
|
[34] |
ZHANG K, KONG W R, LIU P P, et al. Assessment and sequencing of air target threat based on intuitionistic fuzzy entropy and dynamic VIKOR[J]. Journal of Systems Engineering and Electronics, 2018, 29(2):305-310.
|
[35] |
KOJADINOVIC I, MARICHAL J L. Entropy of bi-capacities[J]. European Journal of Operational Research, 2007, 178(1):164-184.
|
[36] |
GUO R F, HUANG G B, LIN Q P, et al. Error minimized extreme learning machine with growth of hidden nodes and incremental learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2009,20(8):1352-1357.
|
[37] |
陈洁钰, 姚佩阳, 王勃, 等. 基于结构熵和IGSO-BP算法的动态威胁评估[J]. 系统工程与电子技术, 2015, 37(5):1076-1083. CHEN J Y, YAO P Y, WANG B, et al. Dynamic threat assessment based on structure entropy and IGSO-BP algorithm[J]. Systems Engineering and Electoronics, 2015, 37(5):1076-1083(in Chinese).
|
[38] |
高大文, 王鹏, 蔡臻超. 人工神经网络中隐含层节点数与训练次数的优化[J]. 哈尔滨工业大学学报, 2003, 35(2):207-209. GAO D W, WANG P, CAI Z C. Optimization of hidden nodes and training times in artificial neural network[J]. Journal of Harbin Institute of Technology, 2003, 35(2):207-209(in Chinese).
|