[1] LU N Y, CHEN C, JIANG B, et al. Latest progress on maintenance strategy of complex system: From condition-based maintenance to predictive maintenance[J]. Acta Automatica Sinica, 2021, 47(1): 1-17 (in Chinese). 陆宁云, 陈闯, 姜斌, 等. 复杂系统维护策略最新研究进展: 从视情维]护到预测性维护[J]. 自动化学报, 2021, 47(1): 1-17. [2] WANG Z Z, CHEN Y X, CAI Z Y, et al. Equipment remaining useful lifetime online prediction based on accelerated degradation modeling with the proportion relationship[J]. Systems Engineering and Electronics, 2021, 43(2): 584-592 (in Chinese). 王泽洲, 陈云翔, 蔡忠义, 等. 基于比例关系加速退化建模的设备剩余寿命在线预测[J]. 系统工程与电子技术, 2021, 43(2): 584-592. [3] HU J W, SUN Q Z, YE Z S, et al. Joint modeling of degradation and lifetime data for RUL prediction of deteriorating products[J]. IEEE Transactions on Industrial Informatics, 2020, 17(7): 4521-4531. [4] WANG X, HU C H, REN Z Q, et al. Performance degradation modeling and remaining useful life prediction for aero-engine based on nonlinear Wiener process[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 223291 (in Chinese). 王玺, 胡昌华, 任子强, 等. 基于非线性Wiener过程的航空发动机性能衰减建模与剩余寿命预测[J]. 航空学报, 2020, 41(2): 223291. [5] YUAN Y, ZHANG Y, DING H. Research on key technology of industrial artificial intelligence and its application in predictive maintenance[J]. Acta Automatica Sinica, 2020, 46(10): 2013-2030 (in Chinese). 袁烨, 张永, 丁汉. 工业人工智能的关键技术及其在预测性维护中的应用现状[J]. 自动化学报, 2020, 46(10): 2013-2030. [6] PECHT M G. Prognostics and Health Management of Electronics[M]. New York: John Wiley & Sons, Inc., 2008. [7] CHAI T Y. Challenges of optimal control for plant-wide production processes in terms of control and optimization theories[J]. Acta Automatica Sinica, 2009, 35(6): 641-649 (in Chinese). 柴天佑. 生产制造全流程优化控制对控制与优化理论方法的挑战[J]. 自动化学报, 2009, 35(6): 641-649. [8] SI X S, WANG W B, HU C H, et al. Remaining useful life estimation-A review on the statistical data driven approaches[J]. European Journal of Operational Research, 2011, 213(1): 1-14. [9] ZHANG Y J, MA Y Z, OUYANG L H, et al. Reliability modeling and maintenance strategy for a single-unit system based on competing failure processes[J]. Systems Engineering and Electronics, 2017, 39(11): 2623-2630 (in Chinese). 张延静, 马义中, 欧阳林寒, 等. 基于竞争失效的单部件系统可靠性建模与维修[J]. 系统工程与电子技术, 2017, 39(11): 2623-2630. [10] SUN F Q, LI Y H, CHENG Y Y. Competing failure modeling for degradation-shock dependence systems with shock toughness[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(12): 2195-2202 (in Chinese). 孙富强, 李艳宏, 程圆圆. 考虑冲击韧性的退化-冲击相依竞争失效建模[J]. 北京航空航天大学学报, 2020, 46(12): 2195-2202. [11] WANG H W, XI W J, FENG Y G. Remaining life prediction based on competing risks of degradation failure and traumatic failure for missiles[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4): 1240-1248 (in Chinese). 王浩伟, 奚文骏, 冯玉光. 基于退化失效与突发失效竞争的导弹剩余寿命预测[J]. 航空学报, 2016, 37(4): 1240-1248. [12] WANG H W, GAO J, WU H Q. Residual remaining life prediction based on competing failures for aircraft engines[J]. Journal of Mechanical Engineering, 2014, 50(6): 197-205 (in Chinese). 王华伟, 高军, 吴海桥. 基于竞争失效的航空发动机剩余寿命预测[J]. 机械工程学报, 2014, 50(6): 197-205. [13] BAI C, HU C H, SI X S, et al. Remaining useful life prediction method for degradation equipment with random shocks[J]. Systems Engineering and Electronics, 2018, 40(12): 2729-2735 (in Chinese). 白灿, 胡昌华, 司小胜, 等. 随机冲击影响的非线性退化设备剩余寿命预测[J]. 系统工程与电子技术, 2018, 40(12): 2729-2735. [14] SI X S, WANG W, HU C H, et al. Remaining useful lifeestimation based on a nonlinear diffusion degradation process[J]. IEEE Transactionson Reliability, 2012, 61(1): 50-67. [15] ZHAI Q Q, YE Z S. RUL prediction of deteriorating products using an adaptive Wiener process model[J]. IEEE Transactions on Industrial Informatics, 2017, 13(6): 2911-2921. [16] NAKAGAWA T. Shock and damage models in reliability theory[M]. London: Springer, 2007. [17] WANG J, LI Z G, BAI G H, et al. An improved model for dependent competing risks considering continuous degradation and random shocks[J]. Reliability Engineering & System Safety, 2020, 193: 106641. [18] ZHANG J X, HU C H, HE X, et al. Lifetime prognostics for deteriorating systems with time-varying random jumps[J]. Reliability Engineering & System Safety, 2017, 167: 338-350. [19] WANG Y P, PHAM H. Modeling the dependent competing risks with multiple degradation processes and random shock using time-varying copulas[J]. IEEE Transactions on Reliability, 2011, 61(1): 13-22. [20] GAO H D, CUI L R, QIU Q G. Reliability modeling for degradation-shock dependence systems with multiple species of shocks[J]. Reliability Engineering & System Safety, 2019, 185: 133-143. [21] SI X S, WANG W B, CHEN M Y, et al. A degradation path-dependent approach for remaining useful life estimation with an exact and closed-form solution[J]. European Journal of Operational Research, 2013, 226(1): 53-66. [22] ZHANG Z X, SI X S, HU C H, et al. An adaptive prognostic approach incorporating inspection influence for deteriorating systems[J]. IEEE Transactions on Reliability, 2018, 68(1): 302-316. [23] LI X, DING Q, SUN J Q. Remaining useful life estimation in prognostics using deep convolution neural networks[J]. Reliability Engineering & System Safety, 2018, 172: 1-11. [24] YAN T, LEI Y G, LI N P, et al. Degradation modeling and remaining useful life prediction for dependent competing failure processes[J]. Reliability Engineering & System Safety, 2021, 212: 107638. [25] LISTOU ELLEFSEN A, BJØRLYKHAUG E, AESØY V, et al. Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture[J]. Reliability Engineering & System Safety, 2019, 183: 240-251. [26] SAHA B, GOEBEL K. Battery data set[EB/OL]. (2022-06-30)[2021-06-07]. http://www.nasa.gov/intelligent-systems-division. |