[1] |
HUANG Z, XU Z, WANG W, et al. Remaining useful life prediction for a nonlinear heterogeneous wiener process model with an adaptive drift[J]. IEEE Transactions on Reliability, 2015, 64(2):687-700.
|
[2] |
周东华, 魏慕恒, 司小胜. 工业过程异常检测、寿命预测与维修决策的研究进展[J]. 自动化学报, 2013, 39(6):711-722. ZHOU D H, WEI M H, SI X S. A survey on anomaly detection, life prediction and maintenance decision for industrial processes[J]. Acta Automatica Sinica, 2013, 39(6):711-722(in Chinese).
|
[3] |
孔祥芬, 蔡峻青,张利寒,等. 大数据在航空系统的研究现状与发展趋势[J]. 航空学报, 2018, 39(12):8-23. KONG X F, CAI J Q, ZHANG L H, et al. Research status and development trend of big data in aviation system[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):8-23(in Chinese).
|
[4] |
银越千, 金海良,陈璇. 涡轴/涡桨发动机压气机流动特点与发展趋势[J]. 航空学报, 2017, 38(9):35-50. YIN Y Q, JIN H L, CHEN X. Flow feature and developing trends of compressor in turboshaft/turboprop engine[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9):35-50(in Chinese).
|
[5] |
赵广社, 吴思思, 荣海军. 多源统计数据驱动的航空发动机剩余寿命预测方法[J]. 西安交通大学学报, 2017, 51(11):150-155. ZHAO G S, WU S S, RONG H J. A multi-source statistics data-driven method for remaining useful life prediction of aircraft engine[J]. Journal of Xi'an Jiaotong University, 2017, 51(11):150-155(in Chinese).
|
[6] |
唐王. 数据驱动的航空发动机余寿预测方法[D]. 南京:南京航空航天大学, 2018:1-20. TANG W. Data-driven aero-engine remaining useful life prediction method[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2018:1-20(in Chinese).
|
[7] |
CHEHADE A, SONG C, LIU K, et al. A data-level fusion approach for degradation modeling and prognostic analysis under multiple failure modes[J]. Journal of Quality Technology, 2018,50(2):150-165.
|
[8] |
周经伦, 厉海涛, 刘学敏, 等. 维纳过程寿命预测的一种自助法[J]. 系统工程理论与实践, 2011,31(8):1588-1592. ZHOU J L, LI H T, LIU X M, et al. A bootstrap method of life prediction based on Wiener process[J]. Systems Engineering Theory & Practice, 2011, 31(8):1588-1592(in Chinese).
|
[9] |
施权, 胡昌华, 司小胜, 等. 考虑执行器性能退化的控制系统剩余寿命预测方法[J]. 自动化学报, 2019, 45(5):941-952. SHI Q, HU C H, SI X S, et al. Remaining useful lifetime prediction method of controlled systems considering performance degradation of actuator[J]. Acta Automatica Sinica, 2019, 45(5):941-952(in Chinese).
|
[10] |
CAESARENDRA W, WIDODO A, THOM P H, et al. Combined probability approach and indirect data-driven method for bearing degradation prognostics[J]. IEEE Transactions on Reliability, 2011,60(1):14-20.
|
[11] |
GEBRAEEL N Z, LAWLEY M A, LI R, et al. Residual-life distributions from component degradation signals:A Bayesian approach[J]. IIE Transactions, 2005, 37(6):543-557.
|
[12] |
SAXENA A, GOEBEL K, SIMON D, et al. Damage propagation modeling for aircraft engine run-to-failure simulation[C]//International Conference on Prognostics and Health Management. Piscataway, NJ:IEEE Press, 2008:1-9.
|
[13] |
LIU K, GEBRAEEL N Z, SHI J. A data-level fusion model for developing composite health indices for degradation modeling and prognostic analysis[J]. IEEE Transactions on Automation Science and Engineering, 2013,10(3):652-664.
|
[14] |
YAN H, LIU K, ZHANG X, et al. Multiple sensor data fusion for degradation modeling and prognostics under multiple operational conditions[J]. IEEE Transactions on Reliability, 2016,65(3):1416-1426.
|
[15] |
SONG C, LIU K, ZHANG X. Integration of data-level fusion model and kernel methods for degradation modeling and prognostic analysis[J]. IEEE Transactions on Reliability, 2018, 67(2):640-650.
|
[16] |
LIU K, HUANG S. Integration of data fusion methodology and degradation modeling process to improve prognostics[J]. IEEE Transactions on Automation Science and Engineering, 2016,13(1):344-354.
|
[17] |
LIU K, CHEHADE A, SONG C. Optimize the signal quality of the composite health index via data fusion for degradation modeling and prognostic analysis[J]. IEEE Transactions on Automation Science and Engineering, 2017,14(3):1504-1514.
|
[18] |
FANG X, PAYNABAR K, GEBRAEEL N. Multistream sensor fusion-based prognostics model for systems with single failure modes[J]. Reliability Engineering & System Safety, 2017,159:322-331.
|
[19] |
SI X, WANG W, CHEN M, et al. A degradation path-dependent approach for remaining useful life estimation with an exact and closed-form solution[J]. European Journal of Operational Research, 2013, 226(1):53-66.
|
[20] |
SI X, WANG W, HU C, et al. Remaining useful life estimation based on a nonlinear diffusion degradation process[J]. IEEE Transactions on Reliability, 2012, 61(1):50-67.
|
[21] |
司小胜, 胡昌华. 数据驱动的设备剩余寿命预测理论及应用[M]. 北京:国防工业出版社, 2016:122-123. SI X S, HU C H. Data-driven remaining useful life prediction theory and applications for equipment[M]. Beijing:National Defense Industry Press, 2016:122-123(in Chinese).
|
[22] |
SAXENA A,GOEBEL. C-MAPSS data set(2019-07-20)[2019-07-23]. https://www.dssz.com/2148128.html.
|
[23] |
ZHANG Y, XIONG R, HE H, et al. Lithium-ion battery remaining useful life prediction with Box-Cox transformation and Monte Carlo simulation[J]. IEEE Transactions on Reliability Industrial Electronics, 2018, 1(1):1-8.
|