1 |
ZHANG K, ZHAO P, SUN C F, et al. Remaining useful life prediction of aircraft lithium-ion batteries based on F-distribution particle filter and kernel smoothing algorithm[J]. Chinese Journal of Aeronautics, 2020, 33(5): 1517-1531.
|
2 |
PANG Z N, SI X S, HU C H, et al. A Bayesian inference for remaining useful life estimation by fusing accelerated degradation data and condition monitoring data[J]. Reliability Engineering & System Safety, 2021, 208: 107341.
|
3 |
吕克洪, 程先哲, 李华康, 等. 电子设备故障预测与健康管理技术发展新动态[J]. 航空学报, 2019, 40(11): 023285.
|
|
LYU K H, CHENG X Z, LI H K, et al. New developments of prognostic and health management technology for electronic equipment[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11): 023285 (in Chinese).
|
4 |
曹明, 王鹏, 左洪福, 等. 民用航空发动机故障诊断与健康管理现状、挑战与机遇Ⅱ: 地面综合诊断、寿命管理和智能维护维修决策[J]. 航空学报, 2022, 43(9): 625574-625574.
|
|
CAO M, WANG P, ZUO H F, et al. Current status, challenges and opportunities of civil aero-engine diagnostics & health management Ⅱ: Comprehensive off-board diagnosis, life management and intelligent condition based MRO[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 625574-625574 (in Chinese).
|
5 |
SI X S, LI T M, ZHANG Q. A general stochastic degradation modeling approach for prognostics of degrading systems with surviving and uncertain measurements[J]. IEEE Transactions on Reliability, 2019, 68(3): 1080-1100.
|
6 |
ZHANG J X, DU D B, SI X S, et al. Joint optimization of preventive maintenance and inventory management for standby systems with hybrid-deteriorating spare parts[J]. Reliability Engineering & System Safety, 2021, 214: 107686.
|
7 |
LU C J, MEEKER W O. Using degradation measures to estimate a time-to-failure distribution[J]. Technometrics, 1993, 35(2): 161-174.
|
8 |
ELWANY A, GEBRAEEL N. Real-time estimation of mean remaining life using sensor-based degradation models[J]. Journal of Manufacturing Science and Engineering, 2009, 131(5): 611-623.
|
9 |
GEBRAEEL N. Prognostics-based identification of the top-k units in a fleet[J]. IEEE Transactions on Automation Science and Engineering, 2010, 7(1): 37-48.
|
10 |
WANG W. A model to determine the optimal critical level and the monitoring intervals in condition-based maintenance[J]. International Journal of Production Research, 2000, 38(6): 1425-1436.
|
11 |
FANG X L, ZHOU R S, GEBRAEEL N. An adaptive functional regression-based prognostic model for applications with missing data[J]. Reliability Engineering & System Safety, 2015, 133: 266-274.
|
12 |
YAN M M, XIE L Y, MUHAMMAD I, et al. An effective method for remaining useful life estimation of bearings with elbow point detection and adaptive regression models[J]. ISA Transactions, 2022, 128: 290-300.
|
13 |
万昌豪, 刘志国, 唐圣金, 等. 基于不完美先验信息的随机系数回归模型剩余寿命预测方法[J]. 北京航空航天大学学报, 2021, 47(12): 2542-2551.
|
|
WAN C H, LIU Z G, TANG S J, et al. Remaining useful life prediction method based on random coefficient regression model with imperfect prior information[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2542-2551 (in Chinese).
|
14 |
TANG D Y, SHENG W B, YU J S. Dynamic condition-based maintenance policy for degrading systems described by a random-coefficient autoregressive model: A comparative study[J]. Eksploatacja i Niezawodnosc - Maintenance and Reliability, 2018, 20(4): 590-601.
|
15 |
AHSAN S, LEMMA T A. Remaining useful life prediction of gas turbine engine using autoregressive model[C]∥UTP-UMP Symposium on Energy Systems 2017 (SES 2017). Paris: EDP Sciences, 2017.
|
16 |
ZHANG N, YU C J, XIE F S. The time-scaling t-ransformation technique for optimal control problems with time-varying time-delay switched systems[J]. Journal of the Operations Research Society of China, 2020, 8: 581-600.
|
17 |
YANG Z L, WANG T, DUAN Z F, et al. Reducing forecast errors by logarithmic transformations for complex time series[C]∥2012 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet). Piscataway: IEEE Press, 2012: 2761-2764.
|
18 |
ZHOU S R, TANG Y C, XU A C. A generalized Wiener process with dependent degradation rate and volatility and time-varying mean-to-variance ratio[J]. Reliability Engineering & System Safety, 2021, 216: 107895.
|
19 |
YU W N, TU W B, KIM I Y, et al. A nonlinear-drift-driven Wiener process model for remaining useful life estimation considering three sources of variability[J]. Reliability Engineering & System Safety, 2021, 212: 107631.
|
20 |
ZHANG H, MO Z L, WANG J Y, et al. Nonlinear-drifted fractional Brownian motion with multiple hidden state variables for remaining useful life prediction of lithium-ion batteries[J]. IEEE Transactions on Reliability, 2020, 69(2): 768-780.
|
21 |
XI X P, ZHOU D H, CHEN M Y, et al. Remaining useful life prediction for fractional degradation processes under varying modes[J]. The Canadian Journal of Chemical Engineering, 2020, 98(6): 1351-1364.
|
22 |
SHAHKAR S, KHORASANI K. A multidimensional Bayesian methodology for diagnosis, prognosis, and health monitoring of electrohydraulic servo valves[J]. IEEE Transactions on Control Systems Technology, 2022, 30(3): 931-943.
|
23 |
TIAN Y Z, WANG L Y, TANG M L, et al. Likelihood-based quantile mixed effects models for longitudinal data with multiple features via MCEM algorithm[J]. Communications in Statistics - Simulation and Computation, 2020, 49(2): 317-334.
|
24 |
BOX G E P, COX D R. An analysis of transformations[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1964, 26(2): 211-243.
|
25 |
YANG Y M, ZHU H Y. A study of non-normal process capability analysis based on Box-Cox transformation[C]∥2018 3rd International Conference on Computational Intelligence and Applications (ICCIA). Piscataway: IEEE Press, 2018: 240-243.
|
26 |
GEBRAEEL N Z, LAWLEY M A, LI R, et al. Residual-life distributions from component degradation signals: A Bayesian approach[J]. IIE Transactions, 2005, 37(6): 543-557.
|
27 |
李天梅, 司小胜, 张建勋. 多源传感监测线性退化设备数模联动的剩余寿命预测方法[J]. 航空学报, 2023, 44(8):227190.
|
|
LI T M, SI X S, ZHANG J X. Data-model interactive remaining useful life prediction method for multi-sensor monitored linear stochastic degrading devices[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(8): 227190 (in Chinese).
|
28 |
WU Y, LI W, WANG Y R, et al. Remaining useful life prediction of lithium-ion batteries using neural network and bat-based particle filter[J]. IEEE Access, 2019, 7: 54843-54854.
|
29 |
XIE G, LI X, ZHANG C L, et al. Data-driven approach for the prediction of remaining useful life[C]∥2017 7th IEEE International Symposium on Microwave, Antenna, Propagation, and EMC Technologies (MAPE). Piscataway: IEEE Press, 2018: 150-155.
|
30 |
李天梅, 司小胜, 刘翔, 等. 大数据下数模联动的随机退化设备剩余寿命预测技术[J]. 自动化学报, 2022, 48(9): 2119-2141.
|
|
LI T M, SI X S, LIU X, et al. Data-model interactive remaining useful life prediction technologies for stochastic degrading devices with big data[J]. Acta Automatica Sinica, 2022, 48(9): 2119-2141 (in Chinese).
|
31 |
蔡喜洋, 乔都助, 孙烈武, 等. 锂离子电池储能电站火灾事故处置研究[J]. 化工安全与环境, 2022, 35(7): 10-13, 17.
|
|
CAI X Y, QIAO D Z, SUN L W, et al. Study on fire accident treatment of lithium ion battery energy storage power station[J]. Chemical Safety & Environment, 2022, 35(7): 10-13, 17 (in Chinese).
|
32 |
SI X S, ZHANG Z X, HU C H. Data-driven remaining useful life prognosis techniques[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017.
|
33 |
SI X S, WANG W B, HU C H, et al. A Wiener-process-based degradation model with a recursive filter algorithm for remaining useful life estimation[J]. Mechanical Systems and Signal Processing, 2013, 35(1-2): 219-237.
|