ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2023, Vol. 44 ›› Issue (5): 226918.doi: 10.7527/S1000-6893.2022.26918
• Solid Mechanics and Vehicle Conceptual Design • Previous Articles Next Articles
Bin LIU(), Jing XU, Meiling HUO, Xueying CUI, Xiufeng XIE, Donghui YANG, Jia WANG
Received:
2022-01-10
Revised:
2022-03-11
Accepted:
2022-03-29
Online:
2023-03-15
Published:
2022-04-06
Contact:
Bin LIU
E-mail:liubin@tyust.edu.cn
Supported by:
CLC Number:
Bin LIU, Jing XU, Meiling HUO, Xueying CUI, Xiufeng XIE, Donghui YANG, Jia WANG. Remaining useful life prediction based on multi-scale adaptive attention network[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 226918.
Table 6
Comparison of score values between MAAN and some advanced prediction methods
方法 | 评分函数值 | |||
---|---|---|---|---|
FD001 | FD002 | FD003 | FD004 | |
CNN[ | 1 286.7 | 13 570 | 1 596.2 | 7 886.4 |
DLSTM[ | 338 | 4 450 | 852 | 5 550 |
DCNN[ | 273.7 | 10 412 | 284.1 | 12 466 |
DSCN[ | 260.67 | 4 367.56 | 246.55 | 5 168.64 |
MSCNN[ | 196.22 | 3 747 | 241.89 | 4 844 |
MLE+CCF[ | 208 | 1 606 | 262 | 2 081 |
MAAN | 183.77 | 901.71 | 214.17 | 1 189.11 |
1 | 沈保明, 陈保家, 赵春华, 等. 深度学习在机械设备故障预测与健康管理中的研究综述[J]. 机床与液压, 2021, 49(19): 162-171. |
SHEN B M, CHEN B J, ZHAO C H, et al. Review on the research of deep learning in mechanical equipment fault prognostics and health management[J]. Machine Tool & Hydraulics, 2021, 49(19): 162-171 (in Chinese). | |
2 | 许艳雷, 邱明, 李军星, 等. 基于SKF-KF-Bayes的滚动轴承剩余使用寿命预测方法[J]. 振动与冲击, 2021, 40(19): 26-31, 40. |
XU Y L, QIU M, LI J X, et al. Remaining useful life prediction method of rolling bearing based on SKF-KF-Bayes[J]. Journal of Vibration and Shock, 2021, 40(19): 26-31, 40 (in Chinese). | |
3 | DAI Y, CHENG S, GAN Q J, et al. Life prediction of Ni-Cd battery based on linear Wiener process[J]. Journal of Central South University, 2021, 28(9): 2919-2930. |
4 | WANG Y D, ZHAO Y F, ADDEPALLI S. Remaining useful life prediction using deep learning approaches: A review[J]. Procedia Manufacturing, 2020, 49: 81-88. |
5 | SATEESH BABU G, ZHAO P L, LI X L. Deep convolutional neural network based regression approach for estimation of remaining useful life[J]. International Conference on Database Systems for Advanced Applications, 2016, 9642: 214-228. |
6 | LI X, DING Q, SUN J Q. Remaining useful life estimation in prognostics using deep convolution neural networks[J]. Reliability Engineering & System Safety, 2018, 172: 1-11. |
7 | SAXENA A, GOEBEL K, SIMON D, et al. Damage propagation modeling for aircraft engine run-to-failure simulation[C]∥ 2008 International Conference on Prognostics and Health Management. Piscataway: IEEE Press, 2008: 10423504. |
8 | SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]∥ 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2015: 1-9. |
9 | LI H. Remaining useful life prediction using multi-scale deep convolutional neural network[J]. Applied Soft Computing, 2020, 89: 106113. |
10 | LIM P, GOH C K, TAN K C, et al. Estimation of remaining useful life based on switching Kalman filter neural network ensemble[J]. Annual Conference of the Prognostics and Health Management Society, 2014, 6(1): 1-9. |
11 | ZHENG S, RISTOVSKI K, FARAHAT A, et al. Long short-term memory network for remaining useful life estimation[C]∥ 2017 IEEE International Conference on Prognostics and Health Management. Piscataway: IEEE Press, 2017: 88-95. |
12 | GUO L, LI N, JIA F, et al. A recurrent neural network based health indicator for remaining useful life prediction of bearings[J]. Neurocomputing, 2017, 240: 98-109. |
13 | HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. |
14 | CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[DB/OL]. arXiv preprint: 1406.1078, 2014. |
15 | CHEN J L, JING HJ, CHANG Y H, et al. Gated recurrent unit based recurrent neural network for remaining useful life prediction of nonlinear deterioration process[J]. Reliability Engineering & System Safety, 2019, 185: 372-382. |
16 | MA M, MAO Z. Deep-convolution-based LSTM network for remaining useful life prediction[J]. IEEE Transactions on Industrial Informatics, 2021, 17(3): 1658-1667. |
17 | 刘畅, 陈雯柏. 一种基于MSDCNN-LSTM的设备RUL预测方法[J]. 西北工业大学学报, 2021, 39(2): 407-413. |
LIU C, CHEN W B. A RUL prediction method of equipments based on MSDCNN-LSTM[J]. Journal of Northwestern Polytechnical University, 2021, 39(2): 407-413 (in Chinese). | |
18 | KHAN S, YAIRI T. A review on the application of deep learning in system health management[J]. Mechanical Systems and Signal Processing, 2018, 107: 241-265. |
19 | PILLAI S, VADAKKEPAT P. Two stage deep learning for prognostics using multi-loss encoder and convolutional composite features[J]. Expert Systems with Applications, 2021, 171: 114569. |
20 | HEIMES F O. Recurrent neural networks for remaining useful life estimation[C]∥ 2008 International Conference on Prognostics and Health Management. Piscataway: IEEE Press, 2008: 10423512. |
21 | ZHU H G, ZENG H, LIU J, et al. Logish: A new nonlinear nonmonotonic activation function for convolutional neural network[J]. Neurocomputing, 2021, 458: 490-499. |
22 | WANG Q L, WU B G, ZHU P F, et al. ECA-net: Efficient channel attention for deep convolutional neural networks[C]∥ 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2020: 11531-11539. |
23 | KINGMA D P, BA J L. Adam: A method for stochastic optimization[DB/OL]. arXiv preprint: 1412.6980, 2014. |
24 | WANG B, LEI Y, LI N, et al. Deep separable convolutional network for remaining useful life prediction of machinery[J]. Mechanical Systems and Signal Processing, 2019, 134: 106330. |
[1] | Biyao QIANG, Kaining SHI, Junxue REN, Yaoyao SHI. Instance transfer for tool remaining useful life prediction cross working conditions [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(13): 629038-629038. |
[2] | Tianmei LI, Xiaosheng SI, Jianxun ZHANG. Data-model interactive remaining useful life prediction method for multi-sensor monitored linear stochastic degrading devices [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 227190-227190. |
[3] | Chao REN, Huiqin LI, Tianmei LI, Jianxun ZHANG, Xiaosheng SI. Equipment remaining useful life prediction method with dynamic calibration of degradation model [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 228345-228345. |
[4] | Jiaxin YANG, Shengjin TANG, Liang LI, Xiaoyan SUN, Shuai QI, Xiaosheng SI. Remaining useful life prediction of implicit nonlinear Wiener degradation process based on multi-source information [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(12): 227662-227662. |
[5] | Baokui YANG, Jianxun ZHANG, Huiqin LI, Xiaosheng SI. Remaining useful life prediction method for nonlinear degrading equipment based on Box-Cox transformation and random coefficient regression model [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(11): 227660-227660. |
[6] | DONG Qing, ZHENG Jianfei, HU Changhua, YU Tonghui, MU Hanxiao. Remaining useful life prediction for adaptive Wiener process method with random shock [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 225914-225914. |
[7] | ZHANG Shengfei, LI Tianmei, HU Changhua, DU Dangbo, SI Xiaosheng. Missing data generation method and its application in remaining useful life prediction based on deep convolutional generative adversarial network [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(8): 225708-225708. |
[8] | MU Hanxiao, ZHENG Jianfei, HU Changhua, ZHAO Ruixing, DONG Qing. Remaining useful life prediction of multivariate degradation equipment based on CDBN and BiLSTM [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(7): 325403-325403. |
[9] | XUE Xiaofeng, TIAN Jing, HE Shuming, FENG Yunwen. Nonlinear degradation assessment of aircraft components monitored by multi-sensors [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(5): 524342-524342. |
[10] | REN Ziqiang, SI Xiaosheng, HU Changhua, WANG Xi. Remaining useful life prediction method for engine combining multi-sensors data [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(12): 223312-223312. |
[11] | ZHANG Jianxun, HU Changhua, ZHOU Zhijie, SI Xiaosheng, DU Dangbo. Multiple Degradation Variables Modeling for Remaining Useful Life Estimation of Gyros Based on Copula Function [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(4): 1111-1121. |
[12] | XU Yuguo, QIU Jing, LIU Guanjun. Joint Optimization of Maintenance and Inventory in Equipment Autonomic Logistics [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013, 34(8): 1864-1873. |
[13] | SHANG Yongshuang, LI Wenhai, LIU Changjie, SHENG Pei. Prediction of Remaining Useful Life for Equipment with Partially Observed Information [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2012, (5): 848-854. |
[14] | Zhang Lei;Li Xingshan;Yu Jinsong;Liao Canxing. A Fault Prognostic Algorithm Based on Hybrid System Particle Filter and Dual Estimation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2009, 30(7): 1277-1283. |
[15] | Zhang Lei;Li Xingshan;Yu Jinsong;Dai Jing. A Fault Prognostic Algorithm Based on Gaussian Mixture Model Particle Filter [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2009, 30(2): 319-324. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341