[1] MA C K, CHANG J M, LIN D C. Input forces estimation of beam structures by an inverse method[J]. Journal of Sound and Vibration, 2003, 259(2): 387-407. [2] LIN D C. Input estimation for nonlinear systems[J]. Inverse Problems in Science and Engineering, 2010, 18(5): 673-689. [3] CHEN T C, LEE M H. Determination of moving tank andmissile impact forces on a bridge structure[J]. Defence Science Journal, 2008, 58(6): 752-761. [4] LIN D C. Adaptive weighting input estimation for nonlinear systems[J]. International Journal of Systems Science, 2012, 43(1): 31-40. [5] LEE M H, CHEN T C. Intelligent fuzzy weighted input estimation method for the input force on the plate structure[J]. Structural Engineering and Mechanics, 2010, 34(1): 1-14. [6] LEE M H, CHEN T C. Intelligent fuzzy weighted input estimation method for the forces generated by an operating rotating machine[J]. Measurement, 2011, 44(5): 917-926. [7] HWANG J S, KAREEM A, KIM W J. Estimation of modal loads using structural response[J]. Journal of Sound and Vibration, 2009, 326(3-5): 522-539. [8] NAETS F, CUADRADO J, DESMET W. Stable force identification in structural dynamics using Kalman filtering and dummy-measurements[J]. Mechanical Systems and Signal Processing, 2015, 50-51: 235-248. [9] MA C K, HO C C. An inverse method for the estimation of input forces acting on non-linear structural systems[J]. Journal of Sound and Vibration, 2004, 275(3-5): 953-971. [10] LOURENS E, REYNDERS E, DE ROECK G, et al. An augmented Kalman filter for force identification in structural dynamics[J]. Mechanical Systems and Signal Processing, 2012, 27: 446-460. [11] YANG J N, PAN S W, LIN S L. Least-squares estimation with unknown excitations for damage identification of structures[J]. Journal of Engineering Mechanics, 2007, 133(1): 12-21. [12] YANG J N, LIN S, HUANG H W, et al. An adaptive extended Kalman filter for structural damage identification[J]. Structural Control and Health Monitoring, 2006, 13: 849-867. [13] YANG J N, PAN S, HUANG H. An adaptive extended Kalman filter for structural damage identifications Ⅱ: Unknown inputs[J]. Structural Control and Health Monitoring, 2007, 14(3): 497-521. [14] ZHANG F, ZHU D M. The dynamic load identification research based on neural network model[J]. Journal of Vibration Engineering, 1997, 10(2): 156-162 (in Chinese). 张方, 朱德懋. 基于神经网络模型的动载荷识别[J]. 振动工程学报, 1997, 10(2): 156-162. [15] XU Y T, MA J S, LIAW A, et al. Demystifying multitask deep neural networks for quantitative structure-activity relationships[J]. Journal of Chemical Information and Modeling, 2017, 57(10): 2490-2504. [16] BALDI P, SADOWSKI P, WHITESON D. Searching for exotic particles in high-energy physics with deep learning[J]. Nature Communications, 2014, 5: 4308. [17] CHEN G R, LI T G, CHEN Q J, et al. Application of deep learning neural network to identify collision load conditions based on permanent plastic deformation of shell structures[J]. Computational Mechanics, 2019, 64(2): 435-449. [18] ZHOU J, DONG L L, GUAN W, et al. Impact load identification of nonlinear structures using deep recurrent neural network[J]. Mechanical Systems and Signal Processing, 2019, 133: 106292. [19] XIA P, YANG T, XU J, et al. Reversed time sequence dynamic load identification method using time delay neural network[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 224452 (in Chinese). 夏鹏, 杨特, 徐江, 等. 利用时延神经网络的动载荷倒序识别[J]. 航空学报, 2021, 42(7): 224452. [20] DAUBECHIES I. The wavelettransform, time-frequency localization and signal analysis[C]//IEEE Transactions on Information Theory. Piscataway: IEEE Press: 961-1005. |