[1] MA L. Aircraft icing and flight safety[J]. Ciuil Aviation Economics & Technology, 1999(5): 37-38 (in Chinese). 马玲. 飞机积冰与飞行安全[J]. 民航经济与技术, 1999(5): 37-38. [2] JIANG T J. Investigation of icing accretion influences on aircraft flight performance[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008: 28-39 (in Chinese). 蒋天俊. 结冰对飞机飞行性能影响的研究[D]. 南京: 南京航空航天大学, 2008: 28-39. [3] WANG Q D. Investigation of the aircraft longitudinal stability and control with ice accretion[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009: 16-24 (in Chinese). 王起达. 结冰后飞机的纵向稳定性和操纵性研究[D]. 南京: 南京航空航天大学, 2009: 16-24. [4] LI Q Y, BAI T, ZHU C L. Research summary ofmechnical de-icing systems of aircrafts[J]. Aircraft Design, 2015, 35(4): 73-77 (in Chinese). 李清英, 白天, 朱春玲. 飞机机械除冰系统的研究综述[J]. 飞机设计, 2015, 35(4): 73-77. [5] LI Q Y, ZHU C L, BAI T. De-icing experiment and numerical simulation of the electro-impulse de-icing system[J]. Journal of Aerospace Power, 2012, 27(2): 350-356 (in Chinese). 李清英, 朱春玲, 白天. 电脉冲除冰系统的除冰实验与数值模拟[J]. 航空动力学报, 2012, 27(2): 350-356. [6] LEVIN I A. USSR electric impulse de-icing system design[J]. Aircraft Engineering and Aerospace Technology, 1972, 44(7): 7-10. [7] Aircraft de-icing/anti-icing fluids-ISO type Ⅰ: ISO 11075—2007[S]. 2007 (in Chinese). 航空器除冰液和防冰液. ISO Ⅰ型: ISO 11075—2007[S]. 2007. [8] ENGINEERS S O A. Fluid, aircraft deicing/anti-icing, non-Newtonian, (pseudoplastic): SAE types Ⅱ, Ⅲ, and Ⅳ[R]. 1998. [9] PLANQUART P, BORRE G V, BUCHLIN J M. Experimental and numerical optimization of a wing leading edge hot air anti-icing system[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005. [10] BU X Q, YU J, LIN G P, et al. Investigation of the design of wing hot-air anti-icing system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(8): 927-930 (in Chinese). 卜雪琴, 郁嘉, 林贵平, 等. 机翼热气防冰系统设计[J]. 北京航空航天大学学报, 2010, 36(8): 927-930. [11] LIN G P, BU X Q, SHEN X B. Aircraft icing and anti-icing technology[M]. Beijing: Beihang University Press, 2016: 32-36 (in Chinese). 林贵平, 卜雪琴, 申晓斌. 飞机结冰与防冰技术[M]. 北京: 北京航空航天大学出版社, 2016: 32-36. [12] GU H Y, SANG W M, PANG R, et al. Numericalsimulation of wing hot air anti-icing and ice ridge formation[J]. Physics of Gases, 2019, 4(4): 41-49 (in Chinese). 顾洪宇, 桑为民, 庞润, 等. 机翼热气防冰及冰脊形成数值模拟[J]. 气体物理, 2019, 4(4): 41-49. [13] TIRUMALA R, BENARD N, MOREAU E, et al. Temperature characterization of dielectric barrier discharge actuators: Influence of electrical and geometric parameters[J]. Journal of Physics D: Applied Physics, 2014, 47(25): 255203. [14] POPOV N A. Fast gas heating in a nitrogen-oxygen discharge plasma: Ⅰ. Kinetic mechanism[J]. Journal of Physics D: Applied Physics, 2011, 44(28): 285201. [15] LIU Y, KOLBAKIR C, HU H Y, et al. An explorative study to use thermal effects of duty-cycled plasma actuation for aircraft icing mitigation[C]//2018 Atmospheric and Space Environments Conference. Reston: AIAA, 2018. [16] PETRENKO V F. Plasma-based de-icing: US200201709-09[P]. 2002-11-21. [17] MENG X, CHEN Z, SONG K. AC-and NS-DBD plasma flow control research[C]//Proceedings of the 2nd NPU-DLR Workshop on Aerodynamics. Cologne: German Aerospace Center (DLR), 2014. [18] CAI J S, TIAN Y Q, MENG X S, et al. A dielectric barrier discharge plasma deicing device and method[P]. 2015-09-09 (in Chinese). 蔡晋生, 田永强, 孟宣市, 等. 一种介质阻挡放电等离子体除积冰装置及方法[P]. 2015-09-09. [19] JAKOB VAN DEN B. De-icing using ns-DBD plasma actuators[D]. Delft: Delft University of Technology, 2016. [20] LIU Y, KOLBAKIR C, HU H. A parametric study to explore ns-DBD plasma actuation for aircraft icing mitigation[C]//2018 Flow Control Conference. Reston, AIAA, 2018. [21] ZHOU W W, LIU Y, HU H Y, et al. Utilization of thermal effect induced by AC-DBD plasma generation for aircraft icing mitigation[C]//2018 AIAA Aerospace Sciences Meeting. Reston: AIAA, 2018. [22] MENG X S, HU H Y, LI C, et al. Mechanism study of coupled aerodynamic and thermal effects using plasma actuation for anti-icing[J]. Physics of Fluids, 2019, 31(3): 037103. [23] WEI B, WU Y, LIANG H, et al. Flow control on a high-lift wing with microsecond pulsed surface dielectric barrier discharge actuator[J]. Aerospace Science and Technology, 2020, 96: 105584. [24] FISH F E, BATTLE J M. Hydrodynamic design of the humpback whale flipper[J]. Journal of Morphology, 1995, 225(1): 51-60. [25] MIKLOSOVIC D S, MURRAY M M, HOWLE L E, et al. Leading-edge tubercles delay stall on humpback whale (Megaptera novaeangliae) flippers[J]. Physics of Fluids, 2004, 16(5): L39-L42. [26] WANG G F. Study on FlowSeparation control and application of bionic wavy edge airfoil[D]. Beijing: Chinese Academy of Sciences, 2014: 33-77 (in Chinese). 王国付. 仿鲸鱼鳍凹凸前缘翼型流动分离控制及应用研究[D]. 北京: 中国科学院研究生院, 2014: 33-77. [27] WU Y, WEI B, LIANG H, et al. Novel plasma ice shape regulation and control device and method and anti-icing aircraft: CN110481792A[P]. 2019-11-22 (in Chinese). 吴云, 魏彪, 梁华, 等. 一种新型等离子体冰形调控装置, 方法及防结冰型飞行器: CN110481792A[P]. 2019-11-22. [28] SHIN J, CHEN H, CEBECI T. A turbulence model for iced airfoils and its validation[C]//30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992. [29] LYU T. Aerodynamic characteristics analysis of icing aircraft wing[D]. Harbin: Harbin Engineering University, 2015: 38-52 (in Chinese). 吕涛. 结冰情况下机翼的气动特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2015: 38-52. [30] LI X K, LIU W, ZHANG T J, et al. Experimental and numerical analysis of the effect of vortex generator installation angle on flow separation control[J]. Energies, 2019, 12(23): 4583. [31] CHEN W J, ZHANG D L. Numericalsimulation of ice accretion on airfoils[J]. Journal of Aerospace Power, 2005, 20(6): 1010-1017 (in Chinese). 陈维建, 张大林. 飞机机翼结冰过程的数值模拟[J]. 航空动力学报, 2005, 20(6): 1010-1017. |