[1] 王向明, 刘文珽.飞机钛合金结构设计与应用[M].北京:国防工业出版社, 2010:1-3. WANG X M, LIU W T.Design and application of aircraft titanium alloy structure[M].Beijing:National Defense Industry Press, 2010:1-3(in Chinese). [2] ASTM International.Standard terminology for additive manufacturing technologies, F2792-12a[S].2012. [3] ZHU Y Y, LIU D, TIAN X J, et al.Characterization of microstructure and mechanical properties of laser melting deposited Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy[J].Materials & Design, 2014, 56(7):445-453. [4] LIU Z, QIN Z-X, LIU F, et al.The microstructure and mechanical behaviors of the Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy produced by laser melting deposition[J].Materials Characterization, 2014, 97:132-139. [5] LIU C M, TIAN X J, WANG H M, et al.Obtaining bimodal microstructure in laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe near β titanium alloy[J].Materials Science and Engineering:A,2014, 609:177-184. [6] LIU C M, WANG H M, TIAN X J, et al.Microstructure and tensile properties of laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe near β titanium alloy[J].Materials Science and Engineering:A, 2013, 586:323-329. [7] CARROLL B E, PALMER T A, BEESE A M.Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing[J].Acta Materialia,2015, 87:309-320. [8] QIU C, RAVI G A, DANCE C, et al.Fabrication of large Ti-6Al-4V structures by direct laser deposition[J].Journal of Alloys and Compounds,2015, 629:351-361. [9] BRANDL E, PALM F, MICHAILOVICHAILOV V, et al.Mechanical properties of additive manufactured titanium (Ti-6Al-4V) blocks deposited by a solid-state laser and wire[J].Materials & Design, 2011, 32(10):4665-4675. [10] BRANDL E, LEYENS C, PALM F.Mechanical properties of additive manufactured Ti-6Al-4V using wire and powder based processes[C]//IOP Conference Series:Materials Science and Engineering, 2011, 26:012004. [11] PEGUES J W, SHAO S, SHAMSAEI N, et al.Fatigue of additive manufactured Ti-6Al-4V, Part I:The effects of powder feedstock, manufacturing, and post-process conditions on the resulting microstructure and defects[J].International Journal of Fatigue,2019, 132:105358. [12] SCHIJVE J.Fatigue of structures and materials in the 20th century and the state of the art[J].International Journal of Fatigue,2003, 25(8):679-702. [13] SANDGREN H R, ZHAI Y, LADOS D A, et al.Characterization of fatigue crack growth behavior in LENS fabricated Ti-6Al-4V using high-energy synchrotron x-ray microtomography[J].Additive Manufacturing, 2016, 12:132-141. [14] HE R J, WANG H M.Fatigue crack nucleation and growth behaviors of laser melting deposited Ti-6Al-2Zr-Mo-V[J].Materials Science and Engineering:A,2010, 527(7):1933-1937. [15] WYCISK E, EMMELMANN C, SIDDIQUE S, et al.High cycle fatigue (HCF) performance of Ti-6Al-4V alloy processed by selective laser melting[J].Advanced Materials Research,2013,816-817:134-139. [16] ÅKERFELDT P, PEDERSON R, ANTTI M-L.A fractographic study exploring the relationship between the low cycle fatigue and metallurgical properties of laser metal wire deposited Ti-6Al-4V[J].International Journal of Fatigue,2016, 87:245-256. [17] MOLAEI R, FATEMI A, SANAEI N, et al.Fatigue of additive manufactured Ti-6Al-4V, Part II:The relationship between microstructure, material cyclic properties, and component performance[J].International Journal of Fatigue,2019, 132:105363. [18] GREITEMEIER D, PALM F, SYASSEN F, et al.Fatigue performance of additive manufactured TiAl6V4 using electron and laser beam melting[J].International Journal of Fatigue,2017, 94:211-217. [19] LEUDERS S, THONE M, RIEMER A, et al.On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting:Fatigue resistance and crack growth performance[J].International Journal of Fatigue,2013, 48:300-307. [20] EDWARDS P, RAMULU M.Fatigue performance evaluation of selective laser melted Ti-6Al-4V[J].Materials Science and Engineering:A, 2014, 598:327-337. [21] STERLING A J, TORRIES B, SHAMSAEI N, et al.Fatigue behavior and failure mechanisms of direct laser deposited Ti-6Al-4V[J].Materials Science and Engineering:A, 2016, 655:100-112. [22] LIU Z, LIU P F, WANG L, et al.Fatigue properties of Ti-6.5Al-3.5Mo-l.5Zr-0.3Si alloy produced by direct laser deposition[J].Materials Science and Engineering:A,2018, 716:140-149. [23] DI CICCO F, FANELLI P, VIVIO F.Fatigue reliability evaluation of riveted lap joints using a new rivet element and DFR[J].International Journal of Fatigue,2017, 101:430-438. [24] HUANG W, WANG T-J, GARBATOV Y, et al.Fatigue reliability assessment of riveted lap joint of aircraft structures[J].International Journal of Fatigue,2012, 43:54-61. [25] WALKER K F, LIU Q, BRANDT M.Evaluation of fatigue crack propagation behaviour in Ti-6Al-4V manufactured by selective laser melting[J].International Journal of Fatigue,2017, 104:302-308. [26] HE X F, WANG T S, WANG X B, et al.Fatigue behavior of direct laser deposited Ti-6.5Al-2Zr-1Mo-1V titanium alloy and its life distribution model[J].Chinese Journal of Aeronautics,2018, 31(11):2124-2135. [27] WANG T S, HE X F, WANG X B, et al.P-S-N curve description of laser metal deposition Ti-6.5Al-2Zr-1Mo-1V titanium alloy after duplex annealing[J].Materials, 2019, 12(3):418. [28] 刘文珽.军用飞机结构疲劳设计细节疲劳额定值方法指南[M].北京:国防工业出版社, 2012:1-10. LIU W T.Military aircraft structural fatigue design detail fatigue rating methodological guide[M].Beijing:National Defense Industry Press, 2012:1-10(in Chinese). [29] RICE R C.Metallic Materials Properties Development and Standardization (MMPDS)[M].2003. |