[1] NAEBE M, ABOLHASANI M M, KHAYYAM H, et al. Crack damage in polymers and composites: A review[J]. Polymer Reviews, 2016, 56(1): 31-69. [2] CHUNG D D L. Self-monitoring structural materials[J]. Materials Science and Engineering: R: Reports, 1998, 22(2): 57-78. [3] 孙侠生, 肖迎春. 飞机结构健康监测技术的机遇与挑战[J]. 航空学报, 2014, 35(12): 3199-3212. SUN X S, XIAO Y C. Opportunities and challenges of aircraft structural health monitoring[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12): 3199-3212(in Chinese). [4] RABIEI M, MODARRES M. Quantitative methods for structural health management using in situ acoustic emission monitoring[J]. International Journal of Fatigue, 2013, 49: 81-89. [5] 刘源, 庞宝君, 迟润强, 等. 基于声发射的铝蜂窝板超高速撞击损伤模式识别方法[J]. 航空学报, 2017, 38(5): 220401. LIU Y, PANG B J, CHI R Q, et al. A damage pattern recognition method for hypervelocity impact on aluminum honeycomb core sandwich based on acoustic emission[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(5): 220401(in Chinese). [6] SUN Y J, YUAN Y Q, WANG L H. Composite structure health monitoring review based on FBG sensor[M]//Cloud Computing and Security. Cham: Springer International Publishing, 2018: 171-179. [7] TULOUP C, HARIZI W, ABOURA Z, et al. On the use of in situ piezoelectric sensors for the manufacturing and structural health monitoring of polymer-matrix composites: A literature review[J]. Composite Structures, 2019, 215: 127-149. [8] 常琦, 杨维希, 赵恒, 等. 基于多传感器的裂纹扩展监测研究[J]. 航空学报, 2020, 41(2): 223336. CHANG Q, YANG W X, ZHAO H, et al. A multi-sensor based crack propagation monitoring research[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 223336(in Chinese). [9] 焦敬品, 李海平, 翟顺成, 等. 基于压缩感知的金属加筋板兰姆波健康监测技术[J]. 航空学报, 2019, 40(7): 422695. JIAO J P, LI H P, ZHAI S C, et al. Lamb waves health monitoring technology for metal stiffened plate based on compressive sensing[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7): 422695(in Chinese). [10] 张科, 袁慎芳, 任元强, 等. 基于逆向有限元法的变形机翼鱼骨的变形重构[J]. 航空学报, 2020, 41(8): 223617. ZHANG K, YUAN S F, REN Y Q, et al. Shape reconstruction of self-adaptive morphing wings’ fishbone based on inverse finite element method[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 223617(in Chinese). [11] HRABUSKA R, PRAUZEK M, VENCLIKOVA M, et al. Image reconstruction for electrical impedance tomography: Experimental comparison of radial basis neural network and Gauss-Newton method[J]. IFAC-PapersOnLine, 2018, 51(6): 438-443. [12] BERA T K. Applications of electrical impedance tomography (EIT): A short review[J]. IOP Conference Series: Materials Science and Engineering, 2018, 331: 012004. [13] THOMAS A J, KIM J J, TALLMAN T N, et al. Damage detection in self-sensing composite tubes via electrical impedance tomography[J]. Composites Part B: Engineering, 2019, 177: 107276. [14] DAI H J, WONG E W, LIEBER C M. Probing electrical transport in nanomaterials: Conductivity of individual carbon nanotubes[J]. Science, 1996, 272(5261): 523-526. [15] WEI B Q, VAJTAI R, AJAYAN P M. Reliability and current carrying capacity of carbon nanotubes[J]. Applied Physics Letters, 2001, 79(8): 1172-1174. [16] PONCHARAL P, WANG Z L, UGARTE D, et al. Electrostatic deflections and electromechanical resonances of carbon nanotubes[J]. Science, 1999, 283(5407): 1513-1516. [17] YU M F, LOURIE O, DYER M J, et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load[J]. Science, 2000, 287(5453): 637-640. [18] LI C Y, THOSTENSON E T, CHOU T W. Sensors and actuators based on carbon nanotubes and their composites: A review[J]. Composites Science and Technology, 2008, 68(6): 1227-1249. [19] THOSTENSON E T, REN Z F, CHOU T W. Advances in the science and technology of carbon nanotubes and their composites: A review[J]. Composites Science and Technology, 2001, 61(13): 1899-1912. [20] KINLOCH I A, SUHR J, LOU J, et al. Composites with carbon nanotubes and graphene: An outlook[J]. Science, 2018, 362(6414): 547-553. [21] WERNIK J M, MEGUID S A. Recent developments in multifunctional nanocomposites using carbon nanotubes[J]. Applied Mechanics Reviews, 2010, 63(5): 050801. [22] CHA J, JUN G H, PARK J K, et al. Improvement of modulus, strength and fracture toughness of CNT/epoxy nanocomposites through the functionalization of carbon nanotubes[J]. Composites Part B: Engineering, 2017, 129: 169-179. [23] FIEDLER B, GOJNY F H, WICHMANN M H G, et al. Fundamental aspects of nano-reinforced composites[J]. Composites Science and Technology, 2006, 66(16): 3115-3125. [24] AL-MAHARMA A Y, SENDUR P, AL-HUNITI N. Critical review of the factors dominating the fracture toughness of CNT reinforced polymer composites[J]. 2018, 6(1): 012003. [25] ZHAO M, MENG L H, MA L C, et al. Layer-by-layer grafting CNTs onto carbon fibers surface for enhancing the interfacial properties of epoxy resin composites[J]. Composites Science and Technology, 2018, 154: 28-36. [26] ZHANG H, LIU Y, KUWATA M, et al. Improved fracture toughness and integrated damage sensing capability by spray coated CNTs on carbon fibre prepreg[J]. Composites Part A: Applied Science and Manufacturing, 2015, 70: 102-110. [27] LAVAGNA L, MASSELLA D, PANTANO M F, et al. Grafting carbon nanotubes onto carbon fibres doubles their effective strength and the toughness of the composite[J]. Composites Science and Technology, 2018, 166: 140-149. [28] 于妍妍, 张远, 高丽敏, 等. 基于碳纳米管薄膜的复合材料层间增韧[J]. 航空学报, 2019, 40(10): 422900. YU Y Y, ZHANG Y, GAO L M, et al. Toughness enhancement for interlaminar fracture composite based on carbon nanotube films[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10): 422900(in Chinese). [29] 张远, 于妍妍, 何静宇, 等. 碳纳米管薄膜增强复合材料I型断裂韧性研究[J]. 炭素技术, 2018, 37(4): 15-20, 32. ZHANG Y, YU Y Y, HE J Y, et al. The model I fracture toughness of composites enhanced by using carbon nanotube film[J]. Carbon Techniques, 2018, 37(4): 15-20, 32(in Chinese). [30] TAKEDA T, NARITA F. Fracture behavior and crack sensing capability of bonded carbon fiber composite joints with carbon nanotube-based polymer adhesive layer under Mode I loading[J]. Composites Science and Technology, 2017, 146: 26-33. [31] GOJNY F H, WICHMANN M H G, FIEDLER B, et al. Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites[J]. Polymer, 2006, 47(6): 2036-2045. [32] KOVACS J Z, VELAGALA B S, SCHULTE K, et al. Two percolation thresholds in carbon nanotube epoxy composites[J]. Composites Science and Technology, 2007, 67(5): 922-928. [33] DAI H B, GALLO G J, SCHUMACHER T, et al. A novel methodology for spatial damage detection and imaging using a distributed carbon nanotube-based composite sensor combined with electrical impedance tomography[J]. Journal of Nondestructive Evaluation, 2016, 35(2): 26. [34] LOYOLA B R, BRIGGS T M, ARRONCHE L, et al. Detection of spatially distributed damage in fiber-reinforced polymer composites[J]. Structural Health Monitoring, 2013, 12(3): 225-239. [35] GALLO G J, THOSTENSON E T. Spatial damage detection in electrically anisotropic fiber-reinforced composites using carbon nanotube networks[J]. Composite Structures, 2016, 141: 14-23. [36] NONN S, SCHAGERL M, ZHAO Y J, et al. Application of electrical impedance tomography to an anisotropic carbon fiber-reinforced polymer composite laminate for damage localization[J]. Composites Science and Technology, 2018, 160: 231-236. [37] HOU T C, LOH K J, LYNCH J P. Spatial conductivity mapping of carbon nanotube composite thin films by electrical impedance tomography for sensing applications[J]. 2007, 18(31): 315501. [38] 王化祥. 电学层析成像[M]. 北京: 科学出版社, 2013: 21-157. WANG H X. Electrical tomography[M]. Beijing: Science Press, 2013: 21-157(in Chinese). [39] HOU T C, LOH K J, LYNCH J P. Electrical impedance tomography of carbon nanotube composite materials[C]//SPIE Smart Structures and Materials+Nondestructive Evaluation and Health Monitoring. Proc SPIE 6529, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2007. San Diego: SPIE, 2007: 705-714. [40] HU N, KARUBE Y, ARAI M, et al. Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor[J]. Carbon, 2010, 48(3): 680-687. |