[1] 贾贝熙, 吕震宙, 雷婧宇. 涡轮叶片寿命可靠性分析的参数化仿真平台[J]. 航空学报, 2021, 42(12): 224747. JIA B X, LYU Z Z, LEI J Y. Parameterized simulation platform of turbine blade life reliability analysis[J].Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 224747(in Chinese). [2] 杨寓全, 刘存良, 张杰, 等. 分腔流量比对涡轮曲端壁表面冷却特性实验[J]. 航空学报, 2021, 42(7): 124399. YANG Y Q, LIU C L, ZHANG J, et al. Effect ofmass flow ratios on film cooling characteristics of endwall: Experimental study[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124399(in Chinese). [3] MILLER R A. Current status of thermal barrier coatings—An overview[J]. Surface and Coatings Technology, 1987, 30(1): 1-11. [4] 韩萌, 黄继华, 陈树海. 热障涂层应力与失效机理若干关键问题的研究进展与评述[J]. 航空材料学报, 2013, 33(5): 83-98. HAN M, HUANG J H, CHEN S H. Researchprogress and review on key problems of stress and failure mechanism of thermal barrier coating[J]. Journal of Aeronautical Materials, 2013, 33(5): 83-98(in Chinese). [5] HE M Y, MUMM D R, EVANS A G. Criteria for the delamination of thermal barrier coatings: With application to thermal gradients[J]. Surface and Coatings Technology, 2004, 185(2-3): 184-193. [6] 刘建华, 刘永葆, 贺星, 等. 涡轮叶片多层结构热障涂层隔热效果分析[J]. 航空发动机, 2017, 43(4): 1-6. LIU J H, LIU Y B, HE X, et al. Analyzing ofthermal insulation of thermal barrier coatings of a turbine vane[J]. Aeroengine, 2017, 43(4): 1-6(in Chinese). [7] SCHULZ U, LEYENS C, FRITSCHER K, et al. Some recent trends in research and technology of advanced thermal barrier coatings[J]. Aerospace Science and Technology, 2003, 7(1): 73-80. [8] 刘福顺, 宫声凯, 徐惠彬. 大功率EB-PVD陶瓷热障涂层的研究与应用[J]. 航空学报, 2000, 21(S1): 80-84. LIU F S, GONG S K, XU H B. Recent development in thermal barrier coatings prepared by EB-PVD[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21(S1): 80-84(in Chinese). [9] 徐惠彬, 宫声凯, 刘福顺. 航空发动机热障涂层材料体系的研究[J]. 航空学报, 2000, 21(1): 7-12. XU H B, GONG S K, LIU F S. Recent development in materials design of thermal barrier coatings for gasturbine[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21(1): 7-12(in Chinese). [10] SCHLICHTING K W, PADTURE N P, JORDAN E H, et al. Failure modes in plasma-sprayed thermal barrier coatings[J]. Materials Science and Engineering: A, 2003, 342(1-2): 120-130. [11] BUSSO E P, LIN J, SAKURAI S, et al. A mechanistic study of oxidation-induced degradation in a plasma-sprayed thermal barrier coating system. Part I: Model formulation[J]. Acta Materialia, 2001, 49(9): 1515-1528. [12] RABIEI A, EVANS A G. Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings[J]. Acta Materialia, 2000, 48(15): 3963-3976. [13] AHRENS M, VAÖEN R, STÖVER D. Stress distributions in plasma-sprayed thermal barrier coatings as a function of interface roughness and oxide scale thickness[J]. Surface and Coatings Technology, 2002, 161(1): 26-35. [14] RANJBAR-FAR M, ABSI J, MARIAUX G, et al. Simulation of the effect of material properties and interface roughness on the stress distribution in thermal barrier coatings using finite element method[J]. Materials & Design, 2010, 31(2): 772-781. [15] EVANS H E. Oxidation failure of TBC systems: An assessment of mechanisms[J]. Surface and Coatings Technology, 2011, 206(7): 1512-1521. [16] 魏洪亮, 杨晓光, 齐红宇, 等. 等离子涂层热疲劳失效模式及失效机理研究[J]. 航空动力学报, 2008, 23(2): 270-275. WEI H L, YANG X G, QI H Y, et al. Study of failure mode and failure mechanisms on thermal fatigue of plasma sprayed thermal barrier coatings[J]. Journal of Aerospace Power, 2008, 23(2): 270-275(in Chinese). [17] 魏洪亮, 杨晓光, 齐红宇. 等离子涂层涡轮导向叶片热疲劳寿命预测研究[J]. 航空动力学报, 2008, 23(1): 1-8. WEI H L, YANG X G, QI H Y. Study on thermal fatigue life prediction for plasma sprayed thermal barrier coatings on the surface of turbine vane[J]. Journal of Aerospace Power, 2008, 23(1): 1-8(in Chinese). [18] GUAN P, AI Y T, FEI C W, et al. Thermal fatigue life prediction of thermal barrier coat on nozzle guide vane via master-slave model[J]. Applied Sciences, 2019, 9(20): 4357. [19] 刘鸿文. 材料力学I[M]. 5版. 北京: 高等教育出版社, 2004: 216-234. LIU H W. Mechanics of materials I[M]. 5th ed. Beijing: Higher Education Press, 2004: 216-234(in Chinese). [20] 杨晓光, 耿瑞, 周燕佩. 热障涂层氧化和热疲劳寿命实验研究[J]. 航空动力学报, 2003, 18(2): 195-200. YANG X G, GENG R, ZHOU Y P. Anexperimental study of oxidation and thermal fatigue of TBC[J]. Journal of Aerospace Power, 2003, 18(2): 195-200(in Chinese). [21] 杨晓光, 耿瑞, 周燕佩. 热障涂层热疲劳寿命预测方法研究[J]. 航空动力学报, 2003, 18(2): 201-205. YANG X G, GENG R, ZHOU Y P. Astudy of thermal fatigue life prediction of TBC[J]. Journal of Aerospace Power, 2003, 18(2): 201-205(in Chinese). [22] 《中国航空材料手册》编委会. 中国航空材料手册(第二卷)变形高温合金、铸造高温合金[M]. 北京: 中国标准出版社, 2001: 765-771. Editorial Committee of China Aviation Materials Manual. Handbook of aeronautical materials of China (Volume II):Wrought and cast superalloys[M]. Beijing: China Standard Press, 2001: 765-771(in Chinese). [23] VEAL B W, PAULIKAS A P, HOU P Y. Tensile stress and creep in thermally grown oxide[J]. Nature Materials, 2006, 5(5): 349-351. [24] ZHU W, CAI M, YANG L, et al. The effect of morphology of thermally grown oxide on the stress field in a turbine blade with thermal barrier coatings[J]. Surface and Coatings Technology, 2015, 276: 160-167. [25] MEIER S M, NISSLEY D M, SHEFFLER K D, et al. Thermal barrier coating life prediction model development[C]//Proceedings of ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition, 2015 [26] 齐红宇, 马立强, 李少林, 等. 等离子热障涂层构件高温热疲劳寿命预测研究[J]. 材料工程, 2014, 42(7): 67-72. QI H Y, MA L Q, LI S L, et al. High temperature thermal fatigue life prediction of plasma sprayed thermal barrier coatings structure[J]. Journal of Materials Engineering, 2014, 42(7): 67-72(in Chinese). [27] JONNALAGADDA K P, ERIKSSON R, LI X H, et al. Thermal barrier coatings: Life model development and validation[J]. Surface and Coatings Technology, 2019, 362: 293-301. |