1 |
龚煜廉, 张建国, 李文博. 光纤传感在航天复材结构健康监测中的应用[J]. 航天器工程, 2022, 31(5): 60-66.
|
|
GONG Y L, ZHANG J G, LI W B. Application of optical fiber sensing in health monitoring of aerospace composite structure[J]. Spacecraft Engineering, 2022, 31(5): 60-66 (in Chinese).
|
2 |
DEY S, MUKHOPADHYAY T, ADHIKARI S. Uncertainty quantification in laminated composites: A meta-model based approach[M]. London: CRC Press, 2017: 1-16.
|
3 |
晏良. 不确定性量化的代理模型分析及优化[D]. 长沙: 国防科技大学, 2018: 7-11.
|
|
YAN L. Analysis and optimization of agent model for uncertainty quantization[D].Changsha: National University of Defense Technology, 2018: 7-11 (in Chinese) .
|
4 |
LEMAIRE M. Structural reliability[M]. Hoboken:John Wiley & Sons, 2013: 3.
|
5 |
SEPAHVAND K, SCHEFFLER M, MARBURG S. Uncertainty quantification in natural frequencies and radiated acoustic power of composite plates: Analytical and experimental investigation[J]. Applied Acoustics, 2015, 87: 23-29.
|
6 |
DEY S, MUKHOPADHYAY T, SAHU S K, et al. Effect of cutout on stochastic natural frequency of composite curved panels[J]. Composites Part B: Engineering, 2016, 105(1): 188-202.
|
7 |
DEY S, NASKAR S, MUKHOPADHYAY T, et al. Uncertain natural frequency analysis of composite plates including effect of noise - A polynomial neural network approach[J]. Composite Structures, 2016, 143(5): 130-142.
|
8 |
MUKHOPADHYAY T, NASKAR S, KARSH P K, et al. Effect of delamination on the stochastic natural frequencies of composite laminates[J]. Composites Part B: Engineering, 2018, 154(7): 242-256.
|
9 |
CHEN X, QIU Z P. A novel uncertainty analysis method for composite structures with mixed uncertainties including random and interval variables[J]. Composite Structures, 2018, 184(11): 400-410.
|
10 |
ZHOU Y, ZHANG X F. Natural frequency analysis of functionally graded material beams with axially varying stochastic properties[J]. Applied Mathematical Modelling, 2019, 67(10): 85-100.
|
11 |
ZHANG X, LIU Y, CAO X B, et al. Uncertain natural characteristics analysis of laminated composite plates considering geometric nonlinearity[J]. Composite Structures, 2023, 315(4): 117028.
|
12 |
MARELLI S, SUDRET B. UQLab: A framework for uncertainty quantification in Matlab[C]∥ Vulnerability, Uncertainty, and Risk. Reston: American Society of Civil Engineers, 2014.
|
13 |
SCHOBI R, SUDRET B, WIART J. Polynomial-chaos-based kriging[J]. International Journal for Uncertainty Quantification, 2015, 5(2): 171-193.
|
14 |
MOONEY C Z. Monte Carlo simulation[M]. Addison:Sage, 1997.
|
15 |
ECHARD B, GAYTON N, LEMAIRE M. AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation[J]. Structural Safety, 2011, 33(2): 145-154.
|
16 |
ZAKI M J, MEIRA W. Data mining and analysis: Fundamental concepts and algorithms [M]. New York: Cambridge University Press, 2014.
|
17 |
MOUSTAPHA M, MARELLI S, SUDRET B. UQLab user manual-active learning reliability: UQLab-V 2.0-117. Zurich: Chair of Risk, Safety and Uncertainty Quantification, 2022.
|
18 |
WANG J S, LI C F, XU G J, et al. Efficient structural reliability analysis based on adaptive Bayesian support vector regression[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 387(9): 114172.
|
19 |
YI J X, ZHOU Q, CHENG Y S, et al. Efficient adaptive Kriging-based reliability analysis combining new learning function and error-based stopping criterion[J]. Structural and Multidisciplinary Optimization, 2020, 62(5): 2517-2536.
|
20 |
WU H, YAN Y, LIU Y J. Reliability based optimization of composite laminates for frequency constraint[J]. Chinese Journal of Aeronautics, 2008, 21(10): 320-327.
|
21 |
FENG K X, LU Z Z, CHEN Z B, et al. An innovative Bayesian updating method for laminated composite structures under evidence uncertainty[J]. Composite Structures, 2023, 304(10): 116429.
|
22 |
TOMBLIN J, MCKENNA J, NG Y, et al. Advanced general aviation transport experiments: Agate-wp3.3-033051-134 [S]. Washington,D.C.:NASA, 2002.
|