1 |
WENG J M, WEN W D, ZHANG H J. Multiaxial fatigue life prediction of composite materials[J]. Chinese Journal of Aeronautics, 2017, 30(3): 1012-1020.
|
2 |
JIA W B, WEN W D, FANG L. Low-velocity impact and post-impact biaxial residual strength tests and simulations of composite laminates[J]. Composite Structures, 2020, 235: 111758.
|
3 |
JIA W B, WEN W D, FANG L. Damage initiation and propagation in composites subjected to low-velocity impact: Experimental results, 3D dynamic damage model, and FEM simulations[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2019, 36(3): 488-499.
|
4 |
李军,刘燕峰,倪洪江,等.航空发动机用树脂基复合材料应用进展与发展趋势[J].材料工程,2022,50(6):49-60.
|
|
LI J, LIU Y F, NI H H, et al. Application progress and development trend of resin matrix composites for aero engine[J]. Journal of Materials Engineering, 2022, 50(6): 49-60 (in Chinese).
|
5 |
刘大响. 一代新材料, 一代新型发动机: 航空发动机的发展趋势及其对材料的需求[J]. 材料工程, 2017, 45(10): 1-5.
|
|
LIU D X. One generation of new material, one generation of new type engine: Development trend of aero-engine and its requirements for materials[J]. Journal of Materials Engineering, 2017, 45(10): 1-5 (in Chinese).
|
6 |
GAUR U, MILLER B. Microbond method for determination of the shear strength of a fiber/resin interface: Evaluation of experimental parameters[J]. Composites Science and Technology, 1989, 34(1): 35-51.
|
7 |
GIANOLA D S, EBERL C. Micro- and nanoscale tensile testing of materials[J]. JOM, 2009, 61(3): 24-35.
|
8 |
HUANG M Y, YAN H G, CHEN C Y, et al. Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(18): 7304-7308.
|
9 |
陈玉丽, 马勇, 潘飞, 等. 多尺度复合材料力学研究进展[J]. 固体力学学报, 2018, 39(1): 1-68.
|
|
CHEN Y L, MA Y, PAN F, et al. Research progress in multi-scale mechanics of composite materials[J]. Chinese Journal of Solid Mechanics, 2018, 39(1): 1-68 (in Chinese).
|
10 |
TANG L C, ZHANG H, HAN J H, et al. Fracture mechanisms of epoxy filled with ozone functionalized multi-wall carbon nanotubes[J]. Composites Science and Technology, 2011, 72(1): 7-13.
|
11 |
TANG L C, ZHANG H, WU X P, et al. A novel failure analysis of multi-walled carbon nanotubes in epoxy matrix[J]. Polymer, 2011, 52(9): 2070-2074.
|
12 |
CHEN Y L, LIU B, HE X Q, et al. Failure analysis and the optimal toughness design of carbon nanotube-reinforced composites[J]. Composites Science and Technology, 2010, 70(9): 1360-1367.
|
13 |
亚斌. 碳纳米管增强复合材料的制备与力学性能研究[D]. 大连: 大连理工大学, 2016.
|
|
YA B. Research on the preparation and mechanical properties of carbon nanotubes reinforced composites[D].Dalian: Dalian University of Technology, 2016 (in Chinese).
|
14 |
施雪军, 任一丹. 碳纳米管/环氧树脂复合材料的导热及力学性能[J]. 平顶山学院学报, 2020, 35(5): 39-42.
|
|
SHI X J, REN Y D. Thermal conductivity and mechanical properties of carbon nanotubes/epoxy resin composites[J]. Journal of Pingdingshan University, 2020, 35(5): 39-42 (in Chinese).
|
15 |
王卫芳, 陆宝山, 耿哲. 环氧树脂/石墨烯/多壁碳纳米管复合材料力学性能研究[J]. 塑料科技, 2019, 47(7): 24-27.
|
|
WANG W F, LU B S, GENG Z. Study on mechanical properties of EP/GNP/MWCNT composites[J]. Plastics Science and Technology, 2019, 47(7): 24-27 (in Chinese).
|
16 |
王颖, 梅园, 李颖, 等. 表面改性对螺旋碳纳米管/环氧树脂复合材料力学性能的影响[J]. 高分子材料科学与工程, 2018, 34(10): 40-45.
|
|
WANG Y, MEI Y, LI Y, et al. Effect of surface modification of helical carbon nanotubes on the mechanical properties of epoxy composites[J]. Polymer Materials Science and Engineering, 2018, 34(10):40-45 (in Chinese).
|
17 |
MA P C, SIDDIQUI N A, MAROM G, et al. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(10): 1345-1367.
|
18 |
CHA J, KIM J, RYU S, et al. Comparison to mechanical properties of epoxy nanocomposites reinforced by functionalized carbon nanotubes and graphene nanoplatelets[J]. Composites Part B: Engineering, 2019, 162: 283-288.
|
19 |
DATSYUK V, KALYVA M, PAPAGELIS K, et al. Chemical oxidation of multiwalled carbon nanotubes[J]. Carbon, 2008, 46(6): 833-840.
|
20 |
DEPLANCKE T, LAME O, BARRAU S, et al. Impact of carbon nanotube prelocalization on the ultra-low electrical percolation threshold and on the mechanical behavior of sintered UHMWPE-based nanocomposites[J]. Polymer, 2017, 111: 204-213.
|
21 |
VIET N V, WANG Q, KUO W S. Effective Young’s modulus of carbon nanotube/epoxy composites[J]. Composites Part B: Engineering, 2016, 94: 160-166.
|
22 |
WANG H, XIE G Y, FANG M H, et al. Mechanical reinforcement of graphene/poly(vinyl chloride) composites prepared by combining the in-situ suspension polymerization and melt-mixing methods[J]. Composites Part B: Engineering, 2017, 113: 278-284.
|
23 |
CHEN Y L, WANG S T, LIU B, et al. Effects of geometrical and mechanical properties of fiber and matrix on composite fracture toughness[J]. Composite Structures, 2015, 122: 496-506.
|
24 |
KINLOCH I A, SUHR J, LOU J, et al. Composites with carbon nanotubes and graphene: An outlook[J]. Science, 2018, 362(6414): 547-553.
|