Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (17): 530001-530001.doi: 10.7527/S1000-6893.2024.30001
• Reviews • Previous Articles
Wenyu WANG1,2, Feng LI3, Feixiang REN3, Xingyu WEI1,2, Jian XIONG1,2()
Received:
2023-12-20
Revised:
2024-02-02
Accepted:
2024-03-20
Online:
2024-04-03
Published:
2024-03-29
Contact:
Jian XIONG
E-mail:jx@hit.edu.cn
Supported by:
CLC Number:
Wenyu WANG, Feng LI, Feixiang REN, Xingyu WEI, Jian XIONG. Research progress on structural design methods and mechanical properties of lightweight high⁃strength composite lattice stiffened shell structure[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(17): 530001-530001.
Table 1
Structural form and composition proportion of composite on unmanned aerial vehicle
无人机名称 | 尺寸/m | 复材结构形式 | 复材占比/% | 用途 |
---|---|---|---|---|
X-45A | 翼展10.3, 弦长8 | 网格加筋、 夹芯结构 | 45 | 军事打击 |
神经元 | 机身9.3, 翼展12.5 | 网格加筋、 夹芯结构 | 50 | 军事侦察、 监视、攻击 |
RQ-4 全球鹰 | 机身13.4, 高4.62, 翼展35.4 | 网格加筋、 夹芯结构 | 65 | 军事侦察 |
X-47B 黄貂鱼 | 机身11.63, 翼展18.92, 高3.1 | 网格加筋结构 | 90 | 军事侦察、 监视、攻击 |
MQ-1 捕食者 | 机身8.22, 高2.1, 宽14.8 | 网格加筋结构 | 92 | 侦查、监视、探测 |
RQ-7 影子 | 机身3.7, 翼展4.2 | 网格加筋结构 | 95 | 军事侦察 |
1 | 袁立群, 单杭英, 杨忠清, 等. 复合材料在无人机上的应用与展望[J]. 玻璃纤维, 2017(6): 30-36. |
YUAN L Q, SHAN H Y, YANG Z Q, et al. The application and prospect of composite materials in UAV[J]. Fiber Glass, 2017(6): 30-36 (in Chinese). | |
2 | 王宇. 先进复合材料在无人机中的应用进展[J]. 现代工业经济和信息化, 2021, 11(11): 150-151. |
WANG Y. Progress of advanced composite materials in unmanned aerial vehicles[J]. Modern Industrial Economy and Informationization, 2021, 11(11): 150-151 (in Chinese). | |
3 | 段国晨, 赵景丽, 赵伟超. 先进复合材料在无人机结构的应用[J]. 纤维复合材料, 2022, 39(2): 105-114. |
DUAN G C, ZHAO J L, ZHAO W C. Application of advanced composite materials in UAV at home and abroad[J]. Fiber Composites, 2022, 39(2): 105-114 (in Chinese). | |
4 | 王尔泰. 高速无人机复合材料机翼结构设计与优化研究[D]. 厦门: 厦门大学, 2020: 1-8. |
WANG E T. The research on structural design and optimization for composite wings of high-speed UAV[D]. Xiamen: Xiamen University, 2020: 1-8 (in Chinese). | |
5 | 闫照为. 太阳能无人机大展弦比机翼结构设计与优化[D]. 沈阳: 沈阳航空航天大学, 2021: 1-9. |
YAN Z W. Structure design and optimization of a solar UAV wine with high aspect ratio[D]. Shenyang: Shenyang Aerospace University, 2021: 1-9 (in Chinese). | |
6 | 沈浩杰, 陈刚, 夏杨. 某型无人机复合材料机翼结构尺寸优化设计[J]. 复合材料科学与工程, 2021(12): 82-88. |
SHEN H J, CHEN G, XIA Y. Size optimization design of composite wing for UAV[J]. Composites Science and Engineering, 2021(12): 82-88 (in Chinese). | |
7 | 陈刚, 王校培, 宋军, 等. 某高载荷大后掠无人机复合材料机翼结构设计与试验验证[J]. 南京航空航天大学学报, 2021, 53(4): 613-619. |
CHEN G, WANG X P, SONG J, et al. Structural design and test verification of composite wing for high load and large sweepback UAVs[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2021, 53(4): 613-619 (in Chinese). | |
8 | 艾森, 常亮, 罗利龙, 等. 具有工程适用性的复合材料机翼结构快速设计[J]. 工程与试验, 2021, 61(3): 24-26, 74. |
AI S, CHANG L, LUO L L, et al. Rapid design of composite wing structure with engineering applicability[J]. Engineering & Test, 2021, 61(3): 24-26, 74 (in Chinese). | |
9 | 伍星亮, 周金宇, 丁力. 无人机机翼的结构/材料一体化优化设计[J]. 机械设计与制造, 2022(3): 214-218. |
WU X L, ZHOU J Y, DING L. Structure/material integrated optimization design of UAV wing[J]. Machinery Design & Manufacture, 2022(3): 214-218 (in Chinese). | |
10 | 樊新乾, 武晓英, 麻丽明, 等. 碳纤维复合薄壁材料的无人机机翼结构优化设计[J]. 塑料科技, 2022, 50(9): 109-113. |
FAN X Q, WU X Y, MA L M, et al. Optimization design of structure of unmanned aerial vehicle wing with carbon fiber composite thin wall material[J]. Plastics Science and Technology, 2022, 50(9): 109-113 (in Chinese). | |
11 | 黄成磊. 复合材料太阳能无人机翼梁与翼肋结构优化[D]. 西安: 西安工业大学, 2022: 1-10. |
HUANG C L. Spar and rib structure optimization of composite solar UAV[D]. Xi’an: Xi’an Technological University, 2022: 1-10 (in Chinese). | |
12 | 关鑫, 王洪雨, 徐挺,等. 某型无人机碳纤维复合材料尾撑杆研制[J]. 复合材料科学与工程, 2020(11): 61-65. |
GUAN X, WANG H Y, XU T, et al. The research and development of composite tail boom for an unmanned aerial vehicle (UAV)[J]. Composites Science and Engineering, 2020(11): 61-65 (in Chinese). | |
13 | 王朝阳, 杨向涛, 徐祥博, 等. 结构储能碳纤维复合材料设计及其在无人机上的应用[J]. 航空制造技术, 2020, 63(18): 84-90, 101. |
WANG C Y, YANG X T, XU X B, et al. Structural energy storage carbon fiber composite design and application in drone[J]. Aeronautical Manufacturing Technology, 2020, 63(18): 84-90, 101 (in Chinese). | |
14 | 彭波, 王帅培. 复合材料无人机弓形起落架有限元仿真与优化[J]. 机械研究与应用, 2020, 33(3): 52-55. |
PENG B, WANG S P. Design and optimization of composite UAV arched landing gear[J]. Mechanical Research & Application, 2020, 33(3): 52-55 (in Chinese). | |
15 | 孟鑫沛, 张燕琴, 蔡舒莹, 等. 无人机复合材料起落架优化设计[J]. 装备制造技术, 2022(8): 110-114. |
MENG X P, ZHANG Y Q, CAI S Y, et al. Optimal design of composite landing gear for UAV[J]. Equipment Manufacturing Technology, 2022(8): 110-114 (in Chinese). | |
16 | 吴瑕, 姚菊明, 王琰, 等. 碳纤维复合材料无人机叶片的仿真与分析[J]. 纺织学报, 2022, 43(8): 80-87. |
WU X, YAO J M, WANG Y, et al. Simulation and analysis of carbon fiber composite unmanned aerial vehicle blade[J]. Journal of Textile Research, 2022, 43(8): 80-87 (in Chinese). | |
17 | 刘峰, 闫清云, 王卓煜. 全复合材料太阳能无人机结构设计与分析[J]. 复合材料科学与工程, 2022(4): 32-39. |
LIU F, YAN Q Y, WANG Z Y. Structural design and analysis of composite solar powered unmanned aerial vehicle[J]. Composites Science and Engineering, 2022(4): 32-39 (in Chinese). | |
18 | 闫清云. 四十公斤级复合材料太阳能无人机结构设计与分析[D]. 广汉: 中国民用航空飞行学院, 2022: 1-5. |
YAN Q Y. Structural design and analysis of 40kg composite solar unmanned aerial vehicle[D]. Guanghan: Civil Aviation Flight University of China, 2022: 1-5 (in Chinese). | |
19 | 张旭东, 赵伟超, 张娟. 小型无人机复合材料圆管的成型工艺[J]. 宇航材料工艺, 2021, 51(3): 82-85. |
ZHANG X D, ZHAO W C, ZHANG J. Forming technology of composite tube for small unmanned aerial vehicle[J]. Aerospace Materials & Technology, 2021, 51(3): 82-85 (in Chinese). | |
20 | 孙昕, 周德旭, 甘子东, 等. 无人机结构用复合材料及其制造技术研究[J]. 产业创新研究, 2021(16): 90-92. |
SUN X, ZHOU D X, GAN Z D, et al. Research on composite materials for UAV structure and its manufacturing technology[J]. Industrial Innovation, 2021(16): 90-92 (in Chinese). | |
21 | 刘向, 徐维, 梁瑶, 等. 碳纤维复合材料一体化成型及其在无人机领域的应用[J]. 化纤与纺织技术, 2021, 50(7): 97-98. |
LIU X, XU W, LIANG Y, et al. Integrated molding of carbon fiber composite and its application in UAV field[J]. Chemical Fiber & Textile Technology, 2021, 50(7): 97-98 (in Chinese). | |
22 | 张旭东, 赵伟超, 张娟. 中型无人机复合材料机翼梁的成型工艺[J]. 宇航材料工艺, 2022, 52(1): 94-97. |
ZHANG X D, ZHAO W C, ZHANG J. Forming technology of composite wing beam for medium unmanned aerial vehicle[J]. Aerospace Materials & Technology, 2022, 52(1): 94-97 (in Chinese). | |
23 | VASILIEV V V, BARYNIN V A, RAZIN A F. Anisogrid composite lattice structures—Development and aerospace applications[J]. Composite Structures, 2012, 94(3): 1117-1127. |
24 | CHEN L M, FAN H L, SUN F F, et al. Improved manufacturing method and mechanical performances of carbon fiber reinforced lattice-core sandwich cylinder[J]. Thin-Walled Structures, 2013, 68: 75-84. |
25 | SAKATA K, BEN G. Development of fast fabrication method for cylindrical-shaped grids and mechanical properties of CFRP pressure vessel reinforced with cylindrical-shaped grids[J]. Advanced Composite Materials, 2016, 25(S1): 1-16. |
26 | OROMIEHIE E, PRUSTY B G, COMPSTON P, et al. Automated fibre placement based composite structures: Review on the defects, impacts and inspections techniques[J]. Composite Structures, 2019, 224: 110987. |
27 | KULKARNI P, MALI K D, SINGH S. An overview of the formation of fibre waviness and its effect on the mechanical performance of fibre reinforced polymer composites[J]. Composites Part A, 2020, 137: 106013. |
28 | ZHANG P, HAN Z Y, GU J C, et al. A strategy of parallel winding of circumferential ribs and helical ribs for composite cylindrical grid structures[J]. Composite Structures, 2021, 275: 114351. |
29 | ZHAO C, DONOUGH M J, PRUSTY B G, et al. Influences of ply waviness and discontinuity on automated fibre placement manufactured grid stiffeners[J]. Composite Structures, 2021, 256: 113106. |
30 | SHI H G, FAN H L, SHAO G J. Equivalent continuum method for anisogrid composite lattice conical shells with equiangular, equidistant and geodesic spiral ribs[J]. Composite Structures, 2021, 275: 114472. |
31 | GAO Y, SONG X W, DING H M, et al. Influence of fiber cutting at the composite grid intersection on the compressive performance of laminate[J]. Composite Structures, 2021, 267: 113859. |
32 | TOTARO G, SPENA P, GIUSTO G, et al. Highly efficient CFRP anisogrid lattice structures for central tubes of medium-class satellites: Design, manufacturing, and performance[J]. Composite Structures, 2021, 258: 113368. |
33 | GIUSTO G, TOTARO G, SPENA P, et al. Composite grid structure technology for space applications[J]. Materials Today: Proceedings, 2021, 34: 332-340. |
34 | HUNT C J, MORABITO F, GRACE C, et al. A review of composite lattice structures[J]. Composite Structures, 2022, 284: 115120. |
35 | MOROZOV E V, LOPATIN A V, KHAKHLENKOVA A A. Finite-element modelling, analysis and design of anisogrid composite lattice spoke of an umbrella-type deployable reflector of space antenna[J]. Composite Structures, 2022, 286: 115323. |
36 | DE NICOLA F, TOTARO G, GIUSTO G, et al. An efficient and scalable manufacturing method for CFRP lattice structures for satellite central tube and large deployable antenna boom applications[J]. CEAS Space Journal, 2023, 15(1): 183-202. |
37 | YANG J S, XIONG J, MA L, et al. Modal response of all-composite corrugated sandwich cylindrical shells[J]. Composites Science and Technology, 2015, 115: 9-20. |
38 | LI W X, SUN F F, WANG P, et al. A novel carbon fiber reinforced lattice truss sandwich cylinder: Fabrication and experiments[J]. Composites Part A: Applied Science and Manufacturing, 2016, 81: 313-322. |
39 | LI M, SUN F F, LAI C L, et al. Fabrication and testing of composite hierarchical isogrid stiffened cylinder[J]. Composites Science and Technology, 2018, 157: 152-159. |
40 | 熊健. 轻质复合材料新型点阵结构设计及其力学行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2013: 1-29. |
XIONG J. Design and mechanical behavior of lightweight composite innovative lattice truss structures[D]. Harbin: Harbin Institute of Technology, 2013: 1-29 (in Chinese). | |
41 | 殷莎. 基于Ashby设计思想的新型点阵结构: 制备工艺与力学性能表征[D]. 哈尔滨: 哈尔滨工业大学, 2013: 1-17. |
YIN S. Novel lattice structures based on Ashby’s designing criteria: Fabrication and mechanical properties characterization[D]. Harbin: Harbin Institute of Technology, 2013: 1-17 (in Chinese). | |
42 | JIANG S, SUN F F, FAN H L, et al. Fabrication and testing of composite orthogrid sandwich cylinder[J]. Composites Science and Technology, 2017, 142: 171-179. |
43 | YIN S, CHEN H Y, WU Y B, et al. Introducing composite lattice core sandwich structure as an alternative proposal for engine hood[J]. Composite Structures, 2018, 201: 131-140. |
44 | WAGNER H N R, SOSA E M, LUDWIG T, et al. Robust design of imperfection sensitive thin-walled shells under axial compression, bending or external pressure[J]. International Journal of Mechanical Sciences, 2019, 156: 205-220. |
45 | WANG B, DU K, HAO P, et al. Experimental validation of cylindrical shells under axial compression for improved knockdown factors[J]. International Journal of Solids and Structures, 2019, 164: 37-51. |
46 | ZHAO C, NIU J L, ZHANG Q Z, et al. Buckling behavior of a thin-walled cylinder shell with the cutout imperfections[J]. Mechanics of Advanced Materials and Structures, 2019, 26(18): 1536-1542. |
47 | BAI X, TANG R K, ZAN Y F, et al. Stability analysis of a cylindrical shell with axially symmetric defects under axial compression based on the reduction stiffness method[J]. Ocean Engineering, 2019, 193: 106584. |
48 | SHATOV A V, BUROV A E, LOPATIN A V. Buckling of composite sandwich cylindrical shell with lattice anisogrid core under hydrostatic pressure[J]. Journal of Physics: Conference Series, 2020, 1546: 012139. |
49 | RAOUF N, DAVAR A, POURTAKDOUST S H. Reliability analysis of composite anisogrid lattice interstage structure[J]. Mechanics Based Design of Structures and Machines, 2020, 50(9): 3322-3330. |
50 | WAGNER H N R, HÜHNE C, NIEMANN S. Buckling of launch-vehicle cylinders under axial compression: A comparison of experimental and numerical knockdown factors[J]. Thin-Walled Structures, 2020, 155: 106931. |
51 | WAGNER H N R, HÜHNE C, ELISHAKOFF I. Probabilistic and deterministic lower-bound design benchmarks for cylindrical shells under axial compression[J]. Thin-Walled Structures, 2020, 146: 106451. |
52 | WAGNER H, HÜHNE C, JANSSEN M. Buckling of cylindrical shells under axial compression with loading imperfections: An experimental and numerical campaign on low knockdown factors[J]. Thin-Walled Structures, 2020, 151: 106764. |
53 | SMEETS B J R, FAGAN E M, MATTHEWS K, et al. Structural testing of a shear web attachment point on a composite lattice cylinder for aerospace applications[J]. Composites Part B: Engineering, 2021, 212: 108691. |
54 | HYEOK J M, TAEK K S, GUL K I, et al. Failure load prediction of anisogrid cylindrical composite lattice structures using failure criterion based on ratio of bending to compressive stress[J]. Journal of Mechanical Science and Technology, 2021, 35(11): 4897-4906. |
55 | KIM Y, PARK J. A theoretical model for the buckling characteristics of a laminated composite cylindrical shell with circular cutouts[J]. Advanced Composite Materials, 2022, 31(5): 515-537. |
56 | FADAVIAN A, FADAVIAN H, DAVAR A, et al. A comparative experimental and numerical study on buckling behavior of composite lattice cylinders[J]. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 2022, 46(4): 1175-1193. |
57 | PARAMASIVAM S, JOHNSONA J T. Experimental and numerical studies on the low-velocity impact response of carbon fiber-reinforced polymer anisogrid cylindrical shells[J]. Polymer Composites, 2022, 43(6): 3831-3845. |
58 | LI M, ZHU H Y, LAI C L, et al. Recent progresses in lightweight carbon fibre reinforced lattice cylindrical shells[J]. Progress in Aerospace Sciences, 2022, 135: 100860. |
59 | ZAREI M, RAHIMI G H. Buckling resistance of joined composite sandwich conical-cylindrical shells with lattice core under lateral pressure[J]. Thin-Walled Structures, 2022, 174: 109027. |
60 | LI Z B, GAO Y, XUE P C, et al. Fabrication and failure mechanisms of all-composite honeycomb sandwich cylinder under the axial compression[J]. Composites Part A: Applied Science and Manufacturing, 2022, 161: 107075. |
61 | DEEPAK S, HIREMATH S S. Design of Euplectella aspergillum based bionic thin tubes for impact absorbing application under different loading conditions[J]. Journal of Materials Research and Technology, 2023, 23: 3790-3810. |
62 | BAO W Y, LI M, AN X Y, et al. Hierarchical-level failure analysis for CFRC lattice stiffened panel[J]. Thin-Walled Structures, 2023, 183: 110354. |
63 | WANG Y L, LI H M, TANG Z J, et al. Mechanical performances of composite orthogrid stiffened cylinder manufactured by an improved method[J]. Composite Structures, 2023, 316: 117044. |
64 | ZHANG L, LI M, LAI C L, et al. Unified buckling computational framework of hydro-statically-loaded stiffened composite cylindrical shells[J]. International Journal of Mechanical Sciences, 2023, 256: 108514. |
65 | LI Z B, WANG W Y, XUE P C, et al. Mechanical properties and failure mechanisms of all-CFRP corrugated sandwich truncated cone[J]. Composites Part B: Engineering, 2024, 268: 111090. |
66 | XIONG J, GHOSH R, MA L, et al. Bending behavior of lightweight sandwich-walled shells with pyramidal truss cores[J]. Composite Structures, 2014, 116: 793-804. |
67 | XIONG J, FENG L N, GHOSH R, et al. Fabrication and mechanical behavior of carbon fiber composite sandwich cylindrical shells with corrugated cores[J]. Composite Structures, 2016, 156: 307-319. |
68 | MAES V K, PAVLOV L, SIMONIAN S M S. An efficient semi-automated optimisation approach for (grid-stiffened) composite structures: Application to Ariane 6 interstage[J]. Composite Structures, 2019, 209: 1042-1049. |
69 | KIM Y, KIM I, PARK J. An approximate formulation for the progressive failure analysis of a composite lattice cylindrical panel in aerospace applications[J]. Aerospace Science and Technology, 2020, 106: 106212. |
70 | LI Q W, SUN B H. Optimization of a lattice structure inspired by glass sponge[J]. Bioinspiration & Biomimetics, 2022, 18(1): 016005. |
71 | LI Z B, GAO Y, WANG Y, et al. Failure mechanisms and acoustic emission pattern recognition of all-CFRP cylindrical honeycomb sandwich shell under three-point bending[J]. Composites Science and Technology, 2023, 237: 110003. |
72 | YANG J S, XIONG J, MA L, et al. Study on vibration damping of composite sandwich cylindrical shell with pyramidal truss-like cores[J]. Composite Structures, 2014, 117: 362-372. |
73 | YANG J S, MA L, CHAVES-VARGASM, et al. Influence of manufacturing defects on modal properties of composite pyramidal truss-like core sandwich cylindrical panels[J]. Composites Science and Technology, 2017, 147: 89-99. |
74 | YANG J S, MA L, SCHRÖDER K U, et al. Experimental and numerical study on the modal characteristics of hybrid carbon fiber composite foam filled corrugated sandwich cylindrical panels[J]. Polymer Testing, 2018, 68: 8-18. |
75 | LOPATIN A V, MOROZOV E V, SHATOV A V. Buckling and vibration of composite lattice elliptical cylindrical shells[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2019, 233(7): 1255-1266. |
76 | KHAKHLENKOVA A A, MOSKVICHEV E V, LOPATIN A V. Finite element modeling of a multifaceted composite lattice anisogrid payload adapter for launching several spacecrafts[J]. Journal of Physics: Conference Series, 2020, 1546(1): 012131. |
77 | LI M, FAN H L. Free vibration behaviors and vibration correlation technique of hierarchical isogrid stiffened composite cylinders[J]. Thin-Walled Structures, 2021, 159: 107321. |
78 | ZAREI M, RAHIMI G H, HEMMATNEZHAD M. On the free vibrations of joined grid-stiffened composite conical-cylindrical shells[J]. Thin-Walled Structures, 2021, 161: 107465. |
79 | SHI H G, FAN H L, SHAO G J. Dynamic theory of composite anisogrid lattice conical shells with nonconstant stiffness and density[J]. Applied Mathematical Modelling, 2023, 115: 661-690. |
80 | ZHU H Y, FAN H L. Manufacturing and testing of CFRC sandwich cylinder with zero-Poisson’s-ratio Kevlar meta-honeycomb core layer[J]. Composites Science and Technology, 2022, 230: 109774. |
81 | LI M, LIN R B, HAN H, et al. Free vibration theory of inhomogeneous anisogrid stiffened cylinder[J]. Composite Structures, 2022, 290: 115509. |
82 | 刘奎良. 重载无人机用碳纤维管铺层方式与连接性能研究[D]. 沈阳: 沈阳工业大学, 2021: 1-6. |
LIU K L. Study on layout mode and connecting performance of carbon fiber tubes for heavy-duty UAV[D]. Shenyang: Shenyang University of Technology, 2021: 1-6 (in Chinese). | |
83 | 赵伟超, 刘文韬. 预浸料吸湿性对无人机复合材料性能的影响[J]. 热固性树脂, 2021, 36(5): 36-38, 47. |
ZHAO W C, LIU W T. Properties research of epoxy prepregs after wetting for the composites of UAV[J]. Thermosetting Resin, 2021, 36(5): 36-38, 47 (in Chinese). | |
84 | 卢相学. 重载无人机碳纤维复合材料传动轴连接结构设计与分析[D]. 沈阳: 沈阳工业大学, 2022: 1-6. |
LU X X. Design and analysis of carbon fiber composite drive shaft connection structure for heavy-duty UAV[D]. Shenyang: Shenyang University of Technology, 2022: 1-6 (in Chinese). | |
85 | 段国晨, 王汝敏, 赵景丽, 等. 中小型无人机用国产碳纤维复合材料拉伸性能研究[J]. 纤维复合材料, 2022, 39(3): 74-80. |
DUAN G C, WANG R M, ZHAO J L, et al. Tensile properties study of localization of carbon fiber composite for unmanned aerial vehicles[J]. Fiber Composites, 2022, 39(3): 74-80 (in Chinese). | |
86 | 范云星, 李易红. 无人机用耐湿热中温环氧树脂体系研究[J]. 高科技纤维与应用, 2022, 47(6): 55-60. |
FAN Y X, LI Y H. Study on the wet and heat resistant moderate temperature curing epoxy resin system for UAV[J]. Hi-Tech Fiber and Application, 2022, 47(6): 55-60 (in Chinese). | |
87 | 程文, 曹岩. 无人机结构复合材料在海洋环境下的强度退化研究[J]. 西安工业大学学报, 2022, 42(3): 247-252. |
CHENG W, CAO Y. Research on strength degradation of UAV structural composites material in marine environment[J]. Journal of Xi’an Technological University, 2022, 42(3): 247-252 (in Chinese). | |
88 | 刘振东, 郑锡涛, 范雯静, 等. 固化残余应力对无人机复合材料机翼强度的影响[J]. 航空学报, 2022, 43(6): 526117. |
LIU Z D, ZHENG X T, FAN W J, et al. Effect of process-induced residual stress on strength of UAV composite wing[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 526117 (in Chinese). | |
89 | 毕广剑. 无人机复合蜂窝夹层机体结构抗毁伤性能研究[D]. 太原: 中北大学, 2022: 1-19. |
BI G J. Research on the anti-damage performance of UAV composite honeycomb sandwich airframe structure[D]. Taiyuan: North University of China, 2022: 1-19 (in Chinese). | |
90 | ASADI H, AKBARZADEH A H, CHEN Z T, et al. Enhanced thermal stability of functionally graded sandwich cylindrical shells by shape memory alloys[J]. Smart Materials and Structures, 2015, 24(4): 045022. |
91 | SUN S, FENG S S, ZHANG Q C, et al. Forced convection in additively manufactured sandwich-walled cylinders with thermo-mechanical multifunctionality[J]. International Journal of Heat and Mass Transfer, 2020, 149: 119161. |
92 | QIN Z M. Magneto-thermo-elasticity of an electroconductive circular cylindrical shell featuring nonlinear deformations[J]. International Journal of Engineering Science, 2010, 48(12): 1797-1810. |
93 | MIKHASEV G I, ALTENBACH H, KORCHEVSKAYA E A. On the influence of the magnetic field on the eigenmodes of thin laminated cylindrical shells containing magnetorheological elastomer[J]. Composite Structures, 2014, 113: 186-196. |
[1] | Junfei TENG, Jiahao LI, Huiyan ZHOU, Dawei WU, Haitao XU, Tiesong LIN, Yongde HUANG. Effect of TLP diffusion welding process parameters on microstructure and mechanical properties of GH5188 superalloy joint [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 429205-429205. |
[2] | Wenbin JIA, Lei FANG, Gen ZHANG, Jian SHI, Zekan HE, Haijun XUAN. Optimal design of fracture toughness for CNT⁃epoxy composites [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 428971-428971. |
[3] | Chunyun ZHANG, Xiongbin CHEN, Jian LIU, Miao CUI. Prediction of thermo⁃physical properties of inorganic⁃organic hybrid phenolic aerogel composites [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 428848-428848. |
[4] | Li CHEN, Xiaoyun ZENG, Wen HUANG, Jianfei ZHANG. Lattice structure optimization design under harmonic base acceleration excitations [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529704-529704. |
[5] | Rui SI, Yong CHEN. Application trends of additive manufacturing technology for civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529677-529677. |
[6] | Lingcai HUANG. Review of nondestructive testing methods for fiber⁃reinforced polymer composites [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529697-529697. |
[7] | Zhenghua GUO, Zheng CHEN, Yida ZENG, Yiqian GUO, Zhenhua NIU, Zirui YANG, Zhiyong LI, Junwu WAN. Research status and prospects of refractory high-entropy alloys prepared by selective laser melting [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 29518-029518. |
[8] | Jing SHU, Wenhe LIAO, Kan ZHENG, Song DONG, Lianjun SUN. Review on rotary ultrasonic machining of carbon fiber composites [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(13): 628939-628939. |
[9] | Shaoping ZHANG, Huiming GUO, Tong GAO, Weihong ZHANG. Design and manufacturing method of multi-scale integrated load bearing thin-walled structure for application in next-generation aeroengine based on advanced laser processing technology [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(13): 630037-630037. |
[10] | Zhuoqun JIANG, Sheng HUANG, Zhanxue WANG. Multiscale hybrid modeling and tensile properties of 2D braided C/SiC with hole-edge densification structures [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(13): 628713-628713. |
[11] | Jiawei FU, Zefei YANG, Yahui CAI, Xiangfan NIE, Lehua QI. Identification method for anisotropic and high strain rate plasticity of sheet metals based on heterogeneous highspeed inertial impact and principle of virtual work [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 229221-229221. |
[12] | Hongyue WANG, Bing WANG, Guodong FANG, Songhe MENG. Digital element modelling and analysis of 2.5D woven shallow cross bending composites [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 227478-227478. |
[13] | Lun TANG, Shengfu YU, Bo ZHENG, Yusheng SHI, Ying CHEN. Development and application of in⁃situ Al2O3 aluminum alloy powder core wire for cylindrical lattice [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 626864-626864. |
[14] | Jian HAN, Shiyong SUN, Bin NIU, Rui YANG, Dongjiang WU. Progress in manufacturing technologies of resin⁃based composite lattice structures [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 628255-628255. |
[15] | Nan ZHAO, Duosheng LI, Yin YE, Fencheng LIU, Wugui JIANG. Microstructure and properties of GH5188 alloy fabricated by selective laser melting [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 428332-428332. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341