Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (2): 28556-028556.doi: 10.7527/S1000-6893.2023.28556
• Reviews • Previous Articles Next Articles
Chao ZHANG1,2, Yong CAO3, Zhenqiang ZHAO1,2, Haiyang ZHANG1,2,4, Jianbo SUN5, Zhihua WANG3, Duokui YU4()
Received:
2023-02-14
Revised:
2023-03-07
Accepted:
2023-05-05
Online:
2024-01-25
Published:
2023-05-18
Contact:
Duokui YU
E-mail:yuduokui@163.com
Supported by:
CLC Number:
Chao ZHANG, Yong CAO, Zhenqiang ZHAO, Haiyang ZHANG, Jianbo SUN, Zhihua WANG, Duokui YU. Applications and key challenges of polymer composites in civil aero⁃engines: State⁃of⁃art review[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 28556-028556.
1 | 《航空发动机设计机手册》总编委会. 航空发动机设计手册 第17册: 载荷及机匣承力件强度分析[M]. 北京: 航空工业出版社, 2001. |
Editor-in-Chief of “Aeroengine Design Manual”. Aeroengine design manual Volume 17: Load and strength analysis of case bearing parts[M]. Beijing: Aviation Industry Press, 2001 (in Chinese). | |
2 | NIU M C Y. Composite airframe structures: Practical design information and data[M]. Hong Kong: Conmilit Press, 1992. |
3 | 胡吉永. 纺织结构成型学2: 多维成形[M]. 上海: 东华大学出版社, 2016. |
HU J Y. Textile structure forming 2: Multidimensional forming[M]. Shanghai: Donghua University Press, 2016 (in Chinese). | |
4 | UPADHYAY R, SINHA S. 3.6 GE-90 and derivative fan blade manufacturing design[M]∥ Comprehensive Composite Materials II. Amsterdam: Elsevier, 2018: 180-188. |
5 | 韦鑫, 荆云娟, 杨明杰, 等. 航空发动机风扇叶片预制体研发现状及趋势[J]. 棉纺织技术, 2020, 48(8): 81-84. |
WEI X, JING Y J, YANG M J, et al. Development status and trend of aeroengine fan blade preform[J]. Cotton Textile Technology, 2020, 48(8): 81-84 (in Chinese). | |
6 | 关留祥, 李嘉禄, 焦亚男, 等. 航空发动机复合材料叶片用3D机织预制体研究进展[J]. 复合材料学报, 2018, 35(4): 748-759. |
GUAN L X, LI J L, JIAO Y N, et al. Review of 3D woven preforms for the composite blades of aero engine[J]. Acta Materiae Compositae Sinica, 2018, 35(4): 748-759 (in Chinese). | |
7 | 籍永青, 徐颖, 游彦宇. 复合材料机匣周向安装边模拟件强度与损伤分析[J]. 航空发动机, 2022, 48(1): 54-60. |
JI Y Q, XU Y, YOU Y Y. Analysis of static strength and damage of circumferential mounting flange simulators in composite casing[J]. Aeroengine, 2022, 48(1): 54-60 (in Chinese). | |
8 | Brasington A, Francis B, Godbold M, et al. A review and framework for modeling methodologies to advance automated fiber placement[J]. Composites Part C: Open Access, 2023, 10: 100347. |
9 | FROMM J. Composite fan blades and enclosures for modern commercial turbo fan engines[EB/OL]. (2016-02-17) [2023-04-10]. . |
10 | GINGER G. Rolls-Royce starts manufacture of world’s largest fan blades, made with composites, for UltraFan demonstrator [EB/OL]. (2020-02-11) [2023-04-10]. . |
11 | 郭军. 纵横双向变厚度三维机织物的研制[D]. 上海: 东华大学, 2016. |
GUO J. Development of 3D woven fabric with gradual thickness change[D]. Shanghai: Donghua University, 2016 (in Chinese). | |
12 | 容治军. 2.5D类缎纹织物增强复合材料疲劳特性研究[D]. 天津: 天津工业大学, 2017. |
RONG Z J. Study on fatigue properties of 2.5D satin fabric reinforced composites[D]. Tianjin: Tianjin Polytechnic University, 2017 (in Chinese). | |
13 | 张瑜, 程博, 张让威, 等. 复合材料机匣整体翻边拼接结构设计与试验验证[J]. 纤维复合材料, 2019, 36(2): 34-38, 48. |
ZHANG Y, CHENG B, ZHANG R W, et al. Structure design and experimental verification of integral flanged composite casing[J]. Fiber Composites, 2019, 36(2): 34-38, 48 (in Chinese). | |
14 | HUANG T, WANG Y L, WANG G. Review of the mechanical properties of a 3D woven composite and its applications[J]. Polymer-Plastics Technology and Engineering, 2018, 57(8): 740-756. |
15 | 孟祥福, 陈美玉, 明璐. RTM工艺参数对复合材料缺陷控制的影响[J]. 热加工工艺, 2018, 47(20): 123-125. |
MENG X F, CHEN M Y, MING L. Influence of RTM process parameters on defects of composites[J]. Hot Working Technology, 2018, 47(20): 123-125 (in Chinese). | |
16 | BROUWER W D, VAN HERPT E C F C, LABORDUS M. Vacuum injection moulding for large structural applications[J]. Composites Part A: Applied Science and Manufacturing, 2003, 34(6): 551-558. |
17 | HINDERSMANN A. Confusion about infusion: An overview of infusion processes[J]. Composites Part A: Applied Science and Manufacturing, 2019, 126: 105583. |
18 | HAMIDI Y K, ALTAN M C. Process induced defects in liquid molding processes of composites[J]. International Polymer Processing, 2017, 32(5): 527-544. |
19 | 王雪明, 李韶亮, 谢富原. 热压罐成型复合材料构件曲率半径对制造缺陷的影响规律[J]. 航空材料学报, 2020, 40(6): 90-96. |
WANG X M, LI S L, XIE F Y. Influence of curvature radius on manufacturing defect of composite component formed by autoclave[J]. Journal of Aeronautical Materials, 2020, 40(6): 90-96 (in Chinese). | |
20 | NIELSEN D, PITCHUMANI R. Intelligent model-based control of preform permeation in liquid composite molding processes, with online optimization[J]. Composites Part A: Applied Science and Manufacturing, 2001, 32(12): 1789-1803. |
21 | SPOERRE J, ZHANG C, WANG B, et al. Integrated product and process design for resin transfer molded parts[J]. Journal of Composite Materials, 1998, 32(13): 1244-1272. |
22 | 冯武. RTM工艺缺陷形成机理与控制方法研究[D]. 武汉: 武汉理工大学, 2005. |
FENG W. Study on the defects formation mechanism and control methods in resin transfer molding[D]. Wuhan: Wuhan University of Technology, 2005 (in Chinese). | |
23 | ZHAO S, RODGERS W R, FRIEBERG B, et al. Study of flow-induced fiber in-plane deformation during high pressure resin transfer molding[J]. Journal of Composite Materials, 2021, 55(15): 2103-2114. |
24 | 刘强, 黄峰, 赵龙, 等. 一种复合材料风扇叶片与金属包边的胶接成型方法: CN113459526B[P]. 2022-06-10. |
LIU Q, HUANG F, ZHAO L, et al. Glue joint forming method for composite material fan blade and metal covered edge: CN113459526B[P]. 2022-06-10 (in Chinese). | |
25 | 高晓进, 周金帅. 复合材料叶片包边粘接超声检测方法[J]. 玻璃钢/复合材料, 2018(8): 102-105. |
GAO X J, ZHOU J S. Ultrasonic testing method for edge bonding of composite blade[J]. Fiber Reinforced Plastics/Composites, 2018(8): 102-105 (in Chinese). | |
26 | 王辉, 黄开, 陈一哲, 等. 一种复合材料叶片金属包边的胶接方法及装置: CN112373052A[P]. 2022-11-29. |
WANG H, HUANG K, CHEN Y Z, et al. Cementing method and device for metal covered edge of composite material blade: CN112373052A[P]. 2022-11-29 (in Chinese). | |
27 | Michael P. Method of bonding a leading edge sheath to a blade body of a fan blade: US8840750B2[P]. 2014-09-23. |
28 | CAO Y, WANG W Z, WANG J P, et al. Experimental and numerical study on tensile failure behavior of bionic suture joints[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 92: 40-49. |
29 | WANG W Z, SUN Y P, LU Y Y, et al. Tensile behavior of bio-inspired hierarchical suture joint with uniform fractal interlocking design[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 113: 104137. |
30 | MILLER S, HANDSCHUH K M, SINNOTT M, et al. Materials, manufacturing, and test development of a composite fan blade leading edge subcomponent for improved impact resistance: NASA/TM—2015-218340[R]. Washington, D.C.: NASA, 2015. |
31 | 刘洋, 王亮, 郭军. 铝包边对复合材料风扇叶片抗鸟撞能力的影响[J]. 兵工学报, 2018, 39(): 114-120. |
LIU Y, WANG L, GUO J. Infuence of aluminum package edge on bird-stike resistance of composite fan blades of an engine[J]. Acta Armamentarii, 2018, 39(S1): 114-120 (in Chinese). | |
32 | PRAVEEN S D, TEJAS K S. Impact simulation: comparison of composite jet engine fan blade with and without leading edge reinforcement[J]. International Research Journal of Engineering and Technology, 2021, 8(8): 1472-1478. |
33 | SIDDENS A, BAYANDOR J. Multidisciplinary impact damage prognosis methodology for hybrid structural propulsion systems[J]. Computers & Structures, 2013, 122: 178-191. |
34 | 李玉龙, 刘会芳. 加载速率对层间断裂韧性的影响[J]. 航空学报, 2015, 36(8): 2620-2650. |
LI Y L, LIU H F. Loading rate effect on interlaminar fracture toughness[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2620-2650 (in Chinese). | |
35 | 吕青泉. 2.5D机织复合材料的动态试验与仿真模拟研究[D]. 西安: 西北工业大学, 2021. |
LV Q Q. Dynamic experiment and numerical simulation study of 2.5D woven composites[J]. Xi’an: Northwestern Polytechnical University, 2021 (in Chinese). | |
36 | HUANG W, CAUSSE P, BRAILOVSKI V, et al. Reconstruction of mesostructural material twin models of engineering textiles based on Micro-CT Aided Geometric Modeling[J]. Composites Part A: Applied Science and Manufacturing, 2019, 124: 105481. |
37 | LOMOV S V, HUYSMANS G, LUO Y, et al. Textile composites: Modelling strategies[J]. Composites Part A: Applied Science and Manufacturing, 2001, 32(10): 1379-1394. |
38 | XIA Z H, ZHOU C W, YONG Q L, et al. On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites[J]. International Journal of Solids and Structures, 2006, 43(2): 266-278. |
39 | 路怀玉. 2.5维编织复合材料的强度研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. |
LU H Y. Strength research of 2.5D braided composites[D]. Harbin: Harbin Institute of Technology, 2014 (in Chinese). | |
40 | ZHONG S Y, GUO L C, LIU G, et al. A continuum damage model for three-dimensional woven composites and finite element implementation[J]. Composite Structures, 2015, 128: 1-9. |
41 | 胡燕琪. 高速冲击下三维机织复合材料宏细观建模方法研究[D]. 杭州: 浙江大学, 2021. |
HU Y Q. Study on macro-meso modeling method of 3D woven composites under high speed impact[D]. Hangzhou: Zhejiang University, 2021 (in Chinese). | |
42 | ZHAO Z Q, DANG H Y, ZHANG C, et al. A multi-scale modeling framework for impact damage simulation of triaxially braided composites[J]. Composites Part A: Applied Science and Manufacturing, 2018, 110: 113-125. |
43 | SHOKRIEH M M, MOSALMANI R, OMIDI M J. Strain-rate dependent micromechanical method to investigate the strength properties of glass/epoxy composites[J]. Composite Structures, 2014, 111: 232-239. |
44 | YOU H E, YUM Y J. Loading rate effect on mode I interlaminar fracture of carbon/epoxy composite[J]. Journal of Reinforced Plastics and Composites, 1997, 16(6): 537-549. |
45 | SUN C T, HAN C. A method for testing interlaminar dynamic fracture toughness of polymeric composites[J]. Composites Part B: Engineering, 2004, 35(6-8): 647-655. |
46 | CAO J C, MENG X H, GU J H, et al. Temperature-dependent interlaminar behavior of unidirectional composite laminates: Property determination and mechanism analysis[J]. Polymer Composites, 2021, 42(8): 3746-3757. |
47 | ARMENÀKAS A E, SCIAMMARELLA C A. Response of glass-fiber-reinforced epoxy specimens to high rates of tensile loading[J]. Experimental Mechanics, 1973, 13(10): 433-440. |
48 | WANG Y, XIA Y M. Experimental and theoretical study on the strain rate and temperature dependence of mechanical behaviour of Kevlar fibre[J]. Composites Part A: Applied Science and Manufacturing, 1999, 30(11): 1251-1257. |
49 | ZHOU Y X, XIA Y M. In situ strength distribution of carbon fibers in unidirectional metal-matrix composites-wires[J]. Composites Science and Technology, 2001, 61(14): 2017-2023. |
50 | RITTEL D, LEE S, RAVICHANDRAN G. A shear-compression specimen for large strain testing[J]. Experimental Mechanics, 2002, 42(1): 58-64. |
51 | 王维斌, 索涛, 郭亚洲, 等. 电磁霍普金森杆实验技术及研究进展[J]. 力学进展, 2021, 51(4): 729-754. |
WANG W B, SUO T, GUO Y Z, et al. Experimental technique and research progress of electromagnetic Hopkinson bar[J]. Advances in Mechanics, 2021, 51(4): 729-754 (in Chinese). | |
52 | LI S G, XU M M, SITNIKOVA E. The formulation of the quadratic failure criterion for transversely isotropic materials: Mathematical and logical considerations[J]. Journal of Composites Science, 2022, 6(3): 82. |
53 | LI S G, SITNIKOVA E. A critical review on the rationality of popular failure criteria for composites[J]. Composites Communications, 2018, 8: 7-13. |
54 | LI X, MA D Y, LIU H F, et al. Assessment of failure criteria and damage evolution methods for composite laminates under low-velocity impact[J]. Composite Structures, 2019, 207: 727-739. |
55 | 唐旭, 张煜坤, 陈勇. 复合材料风扇叶片高周疲劳薄弱点位置预测[J]. 航空动力学报, 2021, 36(3): 498-508. |
TANG X, ZHANG Y K, CHEN Y. Prediction of composite fan blade high cycle fatigue weak-link point location[J]. Journal of Aerospace Power, 2021, 36(3): 498-508 (in Chinese). | |
56 | LIU X D, ZHANG D T, MAO C J, et al. Full-field progressive fatigue damage of 3D5D braided composites with yarn-reduction: Visualization, classification, and quantification[J]. Composites Science and Technology, 2022, 218: 109214. |
57 | SONG J, WEN W D, CUI H T. Fatigue behaviors of 2.5D woven composites at ambient and un-ambient temperatures[J]. Composite Structures, 2017, 166: 77-86. |
58 | RAFIEE R, ABBASI F, MALEKI S. Fatigue analysis of a composite ring: Experimental and theoretical investigations[J]. Journal of Composite Materials, 2020, 54(26): 4011-4024. |
59 | 翁晶萌. 复合材料多轴疲劳行为与寿命预测模型及方法研究[D]. 南京: 南京航空航天大学, 2019. |
WENG J M. Multiaxial mechanical behavior and fatigue life prediction of composite laminates[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019 (in Chinese). | |
60 | Federal Aviation Administration. Special conditions: General electric (GE) aircraft engines model(s) GE90-75B/-85B/-76B turbofan engines: [S]. Washington, D.C.: Federal Aviation Administration, 1995. |
61 | Federal Aviation Administration. Special conditions: General electric company GEnx model turbofan engines: [S]. Washington, D.C.: Federal Aviation Administration, 2009. |
62 | 张科伟. 复合材料/钛合金板冲击损伤分析与评估方法研究[D]. 南京: 南京航空航天大学, 2011. |
ZHANG K W. Research and assessment method on the impact resistance of titanium and composite plate[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011 (in Chinese). | |
63 | 李建华, 刘杰. WJ9发动机涡轮转子叶片包容性研究: CASS 2000-PH-011[R]. 北京: 中国航空学会, 2000. |
LI J H, LIU J. Research on inclusion of WJ9 engine turbine rotor blades: CASS 2000-PH-011[R]. Beijing: Chinese Society of Aeronautics and Astronautics, 2000 (in Chinese). | |
64 | 范志强. 航空发动机机匣包容性理论和试验研究[D]. 南京: 南京航空航天大学, 2006. |
FAN Z Q. Theory and experimental study on aeroengine casing containment[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2006 (in Chinese). | |
65 | 谢文涛. 航空发动机动力涡轮包容设计与验证技术研究[D]. 上海: 上海交通大学, 2017. |
XIE W T. Containment design and verification technology research on powerturbine of aeroengine[D]. Shanghai: Shanghai Jiao Tong University, 2017 (in Chinese). | |
66 | 孔維夷, 徐焱, 張璇, 等. 复合材料风扇包容机匣关键性能提升[J]. 航空动力, 2022(1): 52-54. |
KONG W Y, XU Y, ZHANG X, et al. Key performance improvement of composite fan containment case[J]. Aerospace Power, 2022(1): 52-54 (in Chinese). | |
67 | 宋曼丽. 三维编织/机织复合材料机匣包容性研究[D]. 杭州: 浙江大学, 2020. |
SONG M L. Research on the containment of 3D braided/woven composite casing[D]. Hangzhou: Zhejiang University, 2020 (in Chinese). | |
68 | 赵振强. 二维三轴编织复合材料的动态力学行为与失效机理[D]. 西安: 西北工业大学, 2019. |
ZHAO Z Q. Dynamic mechanical behavior and failure mechanism of two-dimensional triaxially braided composites[D]. Xi’an: Northwestern Polytechnical University, 2019 (in Chinese). | |
69 | 顾善群, 张代军, 刘燕峰, 等. 聚酰亚胺纤维/双马树脂复合材料抗高速冲击性能[J]. 材料工程, 2021, 49(1): 119-125. |
GU S Q, ZHANG D J, LIU Y F, et al. Anti-high speed impact properties of polyimide fiber/bismaleimide resin composites[J]. Journal of Materials Engineering, 2021, 49(1): 119-125 (in Chinese). | |
70 | 曹俊超, 孙建波, 曹勇, 等. 混杂纤维增强环氧树脂复合材料高速冲击损伤行为[J]. 复合材料学报, 2022, 39(10): 4935-4948. |
CAO J C, SUN J B, CAO Y, et al. High-velocity impact damage behavior of hybrid fiber reinforced epoxy composites[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4935-4948 (in Chinese). | |
71 | 谢克富. 轻质抗高速冲击凯夫拉/聚乙烯纤维混杂复合材料研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
XIE K F. Research on lightweight high speed impact kevlar/polyethylene fiber hybrid composites[D]. Harbin: Harbin Institute of Technology, 2020 (in Chinese). | |
72 | 张辰. 碳/玻单向经编混杂复合材料抗冲击性能及损伤机理研究[D]. 上海: 东华大学, 2021. |
ZHANG C. Study on impact resistance properties and damage mechanism of carbon/glass unidirectional warp knitted hybrid composites[D]. Shanghai: Donghua University, 2021 (in Chinese). | |
73 | 唐梦云. 碳-芳纶混杂二维编织复合材料冲击性能实验研究[D]. 天津: 天津工业大学, 2017. |
TANG M Y. Experimental study on impact properties of carbon-aramid hybrid two-dimensional braided composites[D].Tianjin: Tianjin Polytechnic University, 2017 (in Chinese). | |
74 | STEPHEN C, SHIVAMURTHY B, MOURAD A H I, et al. Experimental and finite element study on high-velocity impact resistance and energy absorption of hybrid and non-hybrid fabric reinforced polymer composites[J]. Journal of Materials Research and Technology, 2022, 18: 5406-5418. |
75 | 曹勇, 张超. 薄层复合材料冲击损伤行为研究进展[J]. 航空学报, 2022, 43(6): 525323. |
CAO Y, ZHANG C. Impact damage behavior of thin-ply composites: A review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 525323 (in Chinese). | |
76 | HIMANEN L, GEURTS A, FOSTER A S, et al. Data-driven materials science: Status, challenges, and perspectives[J]. Advanced Science, 2019, 6(21): 1900808. |
77 | 杨航, 李丽坤, 刘道平, 等. 数据驱动梯度结构材料弹塑性本构[J]. 固体力学学报, 2021, 42(3): 233-240. |
YANG H, LI L K, LIU D P, et al. Data-driven elastoplastic constitutive model for gradient structure materials[J]. Chinese Journal of Solid Mechanics, 2021, 42(3): 233-240 (in Chinese). | |
78 | LI X, ZHANG C, WU Z. An inverse determination method for strain rate and temperature dependent constitutive model of elastoplastic materials[J]. Structural Engineering and Mechanics, 2021, 80(5): 539-551. |
79 | KIRCHDOERFER T, ORTIZ M. Data-driven computational mechanics[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 304: 81-101. |
80 | KIRCHDOERFER T, ORTIZ M. Data driven computing with noisy material data sets[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 326: 622-641. |
81 | KIRCHDOERFER T, ORTIZ M. Data-driven computing in dynamics[J]. International Journal for Numerical Methods in Engineering, 2018, 113(11): 1697-1710. |
82 | BARBOSA A, UPADHYAYA P, IYPE E. Neural network for mechanical property estimation of multilayered laminate composite[J]. Materials Today: Proceedings, 2020, 28: 982-985. |
83 | ARTERO-GUERRERO J A, PERNAS-SÁNCHEZ J, MARTÍN-MONTAL J, et al. The influence of laminate stacking sequence on ballistic limit using a combined experimental/FEM/artificial neural networks (ANN) methodology[J]. Composite Structures, 2018, 183: 299-308. |
84 | TAO C C, ZHANG C, JI H L, et al. Application of neural network to model stiffness degradation for composite laminates under cyclic loadings[J]. Composites Science and Technology, 2021, 203: 108573. |
[1] | Qi LIU, Yongjie SHI, Zhiyuan HU, Guohua XU. Parameter effects analysis on aerodynamic and aeroacoustic characteristics of coaxial rigid rotor [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 528856-528856. |
[2] | Zonghui WANG, Yunjun YANG, Hongrui ZHAO, Xuechen WANG. Aerodynamic optimization design of tiltrotor under multiple flight conditions [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529024-529024. |
[3] | Shaoqiang HAN, Wenping SONG, Zhonghua HAN, Jianhua XU. High-accuracy numerical-simulation of unsteady flow over high-speed coaxial rigid rotors [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529064-529064. |
[4] | Zhipeng CAO, Yongming WANG, Longbo ZHAO, Chaobin GUAN, Xiao NIU, Chen CHEN. Design technique of swept and bowed axial compressor [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529676-529676. |
[5] | Lingcai HUANG. Review of nondestructive testing methods for fiber⁃reinforced polymer composites [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529697-529697. |
[6] | Zhiyuan WU, Linchuan ZHAO, Ge YAN, Haifeng HU, Zhibo YANG, Wenming ZHANG. Vibration characteristics of blade tip in a shaft⁃disk⁃cracked⁃blade coupling system [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 628346-628346. |
[7] | Tianqing LI, Weimin WANG, Xulong ZHANG, Shuhui WANG, Zhenyu FU. Identification method of rotor blade axial displacement based on blade tip timing [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 228682-228682. |
[8] | Kangshen XIANG, Weijie CHEN, Jianxin LIAN, Weiyang QIAO. Numerical analysis of effect of bend/lean stator on turbine tonal noise [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 129366-129366. |
[9] | Neng WAN, Qixin ZHUANG, Yanheng GUO, Zhiyong CHANG, Dao WANG. Sampling strategy for on-machine measurement of aero-engine blade under constraint of fitting accuracy [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 427151-427151. |
[10] | Jiaqi LUO, Zeshuai CHEN, Zhengping ZOU, Fei ZENG, Pengcheng DU. Statistics on geometric uncertainties of casting blades in low-pressure turbines [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 427203-427203. |
[11] | Xulong ZHANG, Weimin WANG, Tianqing LI, Yulong LIN, Xinxi AI, Zhenguo WANG. Analysis and verification of trend term for tip timing signal under variable speed condition [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 426980-426980. |
[12] | Zhiyang ZHENG, Yang ZHANG, Zhao ZHANG, Baohai WU, Ying ZHANG. Layout optimization of auxiliary support for thin-walled blade based on GA-SVR [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(4): 426805-426805. |
[13] | Weimin WANG, Dongfang HU. Review on non⁃contact dynamic stress measurement methods of rotating blades [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 28516-028516. |
[14] | Deli ZHANG, Zheng QIN, Zhe LIU, Ming LI, Kai HE. Intelligent clamping system for machining composite blades of aeroengines [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(20): 428987-428987. |
[15] | Rubing LIU, Zefan CHEN, Ruixin LIN, Qi LIN. Active control of flow-induced vibration of blades in a plane cascade by a plasma synthetic jet [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(20): 128430-128430. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341