[1] FARQUHAR R W, DUNHAM D W, GUO Y, et al. Utilization of libration points for human exploration in the Sun-Earth-Moon system and beyond[J]. Acta Astronautica, 2004, 55(3-9):687-700. [2] YI Q, ANTON R. Transfers to lunar libration point orbits[J]. Communications in Nonlinear Science and Numerical Simulation, 2019, 74:180-200. [3] FRIDLUND M, HENNING T. Towards other Earths:DARWIN/TPF and the search for extrasolar terrestrial planets[C]//ESA SP-539, 2003. [4] OLIVER P L, STEFAN R M, SARAH L H. Planet-finding performance of the TPF-I Emma architecture[J]. Proceedings of SPIE, 2007, 6693:1-9. [5] YUN X, BACHMANN E R, MCGHEE R B, et al. Testing and evaluation of an integrated GPS/INS system for small AUV navigation[J]. IEEE Journal of Oceanic Engineering, 1999, 24(3):396-404. [6] LEE J Y, KIM H S, CHOI K H, et al. Adaptive GPS/INS integration for relative navigation[J]. GPS Solutions, 2016, 20(1):63-75. [7] SKOG I. GNSS-aided INS for land vehicle positioning and navigation[D]. Stockholm:KTH Royal Institute of Technology, 2007. [8] KIM S G, CRASSIDIS J L, CHENG Y, et al. Kalman filtering for relative spacecraft attitude and position estimation[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(1):133-143. [9] ALONSO R, CRASSIDIS J, JUNKINS J. Vision-based relative navigation for formation flying of spacecraft[C]//Paperaiaa of the AIAA GNC Conference & Exhibit,2013. [10] WU S, KUANG D. Positioning with autonomous formation flyer (AFF) on space-technology 3[C]//Proceedings of the Institute of Navigation ION GPS-99 Conference, 1999. [11] PURCELL G, KUANG D, LICHTEN S, et al. Autonomous formation flyer (AFF) sensor technology development[C]//21 st Annual AAS Guidance and Control Conference, 1998, 45(4):1-21. [12] MCLOUGHLIN T, CAMPBELL M. Hybrid leader follower and sensor scheduling for large spacecraft networks[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2004. [13] AUNG M, PURCELL G, TIEN J, et al. Autonomous formation-flying sensor for the StarLight mission[J]. Interplanetary Network Progress Report, 2002, 42(152):1-15. [14] WANG X C, ZHAO K C, YOU Z. Coordinated motion control of distributed spacecraft with relative state estimation[J]. Journal of Aerospace Engineering, 2016, 29(3):04015068. [15] WANG X C, SUN T, SUN C H, et al. Distributed networked localization using neighboring distances only through a computational topology control approach[J]. International Journal of Distributed Sensor Networks, 2020, 16(3):1-10. [16] WANG X C, SUN T, FAN C S. Neighborhood Kalman estimation for distributed localization in wireless sensor networks[J]. Mathematical Problems in Engineering, 2016, 2016(FEB.):1-8. [17] FERGUSON P, HOW J. Decentralized estimation algorithms for formation flying spacecraft[C]//AIAA Guidance, Navigation, and Control Conference, 2003. [18] WU Y, CAO X, XUE D. Autonomous relative navigation for formation flying satellites[C]//Systems and Control in Aerospace and Astronautics, 2006. [19] GOMEZ G, LLIBRE J, MARTINEZ R, et al. Dynamics and mission design near libration points[M]. Singapore:World Scientific, 2001:305-379. [20] SARKKA S. On unscented Kalman filtering for state estimation of continuous-time nonlinear systems[J]. IEEE Transactions on Automatic Control, 2007, 52(9):1631-1641. |