[1] 王大轶, 胡启阳, 胡海东, 等. 非合作航天器自主相对导航研究综述[J]. 控制理论与应用, 2018, 35(10):5-17. WANG D Y, HU Q Y, HU H D, et al. Review of autonomous relative navigation for non-cooperative spacecraft[J]. Control Theory & Applications, 2018, 35(10):5-17(in Chinese). [2] 常海涛, 黄攀峰, 王明, 等. 空间细胞机器人接管控制的分布式控制分配[J]. 航空学报, 2016, 37(9):2864-2873. CHANG H T, HUANG P F, WANG M, et al. Distributed control allocation for cellular space robots in takeover control[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2864-2873(in Chinese). [3] 陈炳龙, 耿云海. 对失控航天器在轨服务的自适应滑模控制器设计[J]. 航空学报, 2015, 36(5):1639-1649. CHEN B L, GENG Y H. Adaptive sliding mode controller design for on-orbit servicing to uncontrollable spacecraft[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1639-1649(in Chinese). [4] 郁丰, 赵依, 汪永生. 基于点云矩形面特征的故障航天器位姿测量[J]. 中国惯性技术学报, 2018, 26(2):255-260. YU F, ZHAO Y, WANG Y S. Pose measurement for malfunctioned spacecraft by utilizing rectangular feature extracted from point cloud[J]. Journal of Chinese Inertial Technology, 2018, 26(2):255-260(in Chinese). [5] FREDRICKSON S E. Mini AERCam for in-space inspection[C]//In-space Non-destructive Inspection Technology Meeting. Houston:NASA Johnson Space Center, 2012:2583. [6] 陈雷, 黄仰博, 刘文祥, 等. 多全球导航卫星系统联合的探月飞行器轨道定位分析[J]. 国防科技大学学报, 2015, 37(3):39-44. CHEN L, HUANG Y B, LIU W X, et al. Analysis of multi-GNSS united lunar explorer orbit positioning[J]. Journal of National University of Defense Technology, 2015, 37(3):39-44(in Chinese). [7] VENTURA J, FLEISCHNER A, WALTER U. Pose tracking of a noncooperative spacecraft during docking maneuvers using a time-of-flight sensor[C]//AIAA Guidance, Navigation, and Control Conference. Reston:AIAA SciTech, 2016:0875. [8] REGOLI L, RAVANDOOR K, SCHMIDT M, et al. Advanced techniques for spacecraft motion estimation using PMD sensors[J]. IFAC Proceedings Volumes, 2012, 45(4):320-325. [9] MARTINEZ H G, GIORGI G, EISSFELLER B. Pose estimation and tracking of non-cooperative rocket bodies using time-of-flight cameras[J]. Acta Astronautica, 2017, 139:165-175. [10] GHOBADI S E. Real time object recognition and tracking using 2D/3D images[D]. Siegen:University of Siegen, 2010:1-107. [11] OPROMOLLA R, FASANO G, RUFINO G, et al. Uncooperative pose estimation with a LIDAR-based system[J]. Acta Astronautica, 2015, 110:287-297. [12] OPROMOLLA R, FASANO G, RUFINO G, et al. A model-based 3D template matching technique for pose acquisition of an uncooperative space object[J]. Sensors, 2015, 15(3):6360-6382. [13] ENDRES F, HESS J, ENGELHARD N, et al. An evaluation of the RGB-D SLAM system[C]//2012 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2012:1691-1696. [14] CADENA C, CARLONE L, CARRILLO H, et al. Past, present, and future of simultaneous localization and mapping:Toward the robust-perception age[J]. IEEE Transactions on Robotics, 2016, 32(6):1309-1332. [15] RUSU R B, BLODOW N, BEETZ M. Fast point feature histograms (FPFH) for 3D registration[C]//2009 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2009:3212-3217. [16] 陈学伟, 朱耀麟, 武桐, 等. 基于SAC-IA和改进ICP算法的点云配准技术[J]. 西安工程大学学报, 2017, 31(3):395-401. CHEN X W, ZHU Y L, WU T, et al. The point cloud registration technology based on SAC-IA and improved ICP[J]. Journal of Xi'an Polytechnic University, 2017, 31(3):395-401(in Chinese). [17] NOVOTNI M, KLEIN R. 3D zernike descriptors for content based shape retrieval[C]//Proceedings of the 8th ACM Symposium on Solid Modeling and Applications. Seattle:ACM, 2003:216-225. [18] 胡修林, 车龙, 叶斌. 3D Zernike矩在三维地形匹配中应用[J]. 测绘科学, 2007, 32(1):107-108. HU X L, CHE L, YE B. The application of 3D Zernike moments in 3D terrain matching[J]. Science of Surveying and Mapping, 2007, 32(1):107-108(in Chinese). [19] FERNANDO G, ALBERTO G C. Fast spacecraft pose estimation based on zernike moments[C]//Proceeding of the 7th International Symposium on Artificial Intelligence, Robotics and Automation in Space. Toykyo:NARA, 2003:19-23. [20] 赵逸伦, 乔兵, 靳永强, 等. 一种采用双目视觉加惯性测量的航天器组合相对导航方法[J]. 航天控制, 2016, 34(4):47-52. ZHAO Y L, QIAO B, JIN Y Q, et al. An integrated relative navigation algorithm for spacecraft based on binocular vision and inertial measurement[J]. Aerospace Control, 2016, 34(4):47-52(in Chinese). [21] WANG K D, ZHU T Q, WANG J L. Real-time terrain matching based on 3D zernike moments[J]. The Journal of Navigation, 2018, 71(6):1441-1459. [22] YE B, CHEN H F. 3D terrain matching algorithm based on 3D zernike moments[C]//Symposium on Photonics & Optoelectronics. Piscataway:IEEE Press, 2012:1-4. [23] 叶斌, 胡修林, 张蕴玉, 等. 基于3D Zernike矩的三维地形匹配算法及性能分析[J].宇航学报, 2007, 28(5):176-180. YE B, HU X L, ZHANG W Y, et al. 3D terrain matching algorithm and performance analysis based on 3D Zernike moments[J]. Journal of Astronautics, 2007, 28(5):176-180(in Chinese). [24] YAN Y, ZHANG Y, TIAN S, et al. Phase analysis of three-dimensional zernike moment for building classification and orientation in digital surface model[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 13(1):58-62. [25] WANG K D, ZHU T Q, GAO Y F, et al. Efficient ter-rain matching with 3D Zernike moments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 55(1):226-235. [26] 尹智龙, 王可东, 高意峰. 基于InSAR的三维地形匹配导航技术的研究与实现[J]. 太赫兹科学与电子信息学报, 2016, 14(5):717-722. YIN Z L, WANG K D, GAO Y F. Implementation of 3-D terrain matching navigation technology based on InSAR data[J]. Journal of Terahertz Science and Electronic Information Technology, 2016, 14(5):717-722(in Chinese). |