[1] SCHARF D P, HADAEGH F Y, PLOEN S R. A survey of spacecraft formation flying guidance and control (Part II):Control[C]//Proceeding of the 2004 American Control Conference. New York:IEEE, 2004:1-7. [2] LEWIS M A, TAN K H. High precision formation control of mobile robots using virtual structures[J]. Autonomous Robots, 1997, 4(4):387-403. [3] WANG Y, YANG X, YAN H. Reliable fuzzy tracking control of near-space hypersonic vehicle using aperiodic measurement information[J]. IEEE Transactions on Industrial Electronics, 2019, 66(12):9439-9447. [4] WANG Y, JIANG B, Wu Z, et al. Adaptive sliding mode fault-tolerant fuzzy tracking control with application to unmanned marine vehicles[J/OL]. IEEE Transactions on Systems Man, and Cybernetics:Systems, (2020-01-24)[2020-05-20]. https://ieeexplore.ieee.org/abstract/document/8968746. doi:10.1109/TSMC.2020.2964808. [5] 张博. 多航天器协同飞行分布式控制研究[D]. 西安:西北工业大学, 2013. ZHANG B. Research on distributed control for multiple spacecraft cooperative flying[D]. Xi'an:Northwestern Polytechnical University, 2013(in Chinese). [6] 郑延斌, 席鹏雪, 王林林, 等. 基于模糊人工势场法的多智能体编队控制及避障方法[J]. 计算机工程与科学, 2019, 41(8):1504-1511. ZHENG Y B, XI P X, WANG L L, et al. A multi-agent formation control and obstacle avoidance method based on fuzzy artificial potential field method[J]. Computer Engineering & Science, 2019, 41(8):1504-1511(in Chinese). [7] 郑延斌, 席鹏雪, 王林林, 等. 基于人工势场法的多智能体编队避障方法[J]. 计算机应用, 2018, 38(12):3380-3384, 3413. ZHENG Y B, XI P X, WANG L L, et al. Obstacle avoidance method for multi-agent formation based on artificial potential field method[J]. Journal of Computer Applications, 2018, 38(12):3380-3384, 3413(in Chinese). [8] IQBAL M, NGO T D, LETH J. A generalized hierarchical nearly cyclic pursuit for the leader-following consensus problem in multi-agent systems[J]. Transactions of the Institute of Measurement and Control, 2018, 40(5):1529-1537. [9] REN W, NATHAN S. Distributed coordination architecture for multi-robot formation control[J]. Robotics and Autonomous Systems, 2008, 56(2):324-333. [10] MA L L, HOVAKIMYAN N. Cooperative target tracking in balanced circular formation:Multiple UAVs tracking a ground vehicle[C]//Proceedings of the 2013 American Control Conference. New York:IEEE, 2013:5386-5391. [11] DAINGADE S, SINHA A. Nonlinear cyclic pursuit based cooperative target tracking[J]. Distributed Autonomous Robotic Systems, Springer Tracts in Advanced Robotics, 2014, 104:17-30. [12] 夏盈盈, 孙洪飞. 基于循环追踪的船舶圆形编队控制[J]. 厦门大学学报(自然科学版), 2015, 54(1):93-98. XIA Y Y, SUN H F. Circular formation control of a ship fleet based on the cyclic pursuit strategy[J]. Journal of Xiamen University (Natural Science), 2015, 54(1):93-98(in Chinese). [13] JAIME L, RAMIREZ R, EMILIO F. New decentralized algorithms for spacecraft formation control based on a cyclic approach[D]. Cambridge:Massachusetts Institute of Technology, 2010. [14] 杨希祥, 杨涛, 张为华. 基于循环追踪算法的编队航天器交会控制[J]. 国防科技大学学报,2014, 36(1):1-5. YANG X X, YANG T, ZHANG W H. Rendezvous control of spacecraft formation based on cyclic pursuit algorithm[J]. Journal of National University of Defense Technology, 2014, 36(1):1-5(in Chinese). [15] YANG H X, YANG X X, ZHANG W H. Distributed control of spacecraft formation using improved cyclic pursuit with beacon guidance[J]. Applied Mechanics and Materials, 2012, 138:38-43. [16] 杨涛. 面向空间任务的追踪理论与应用研究[D]. 长沙:国防科技大学, 2010. YANG T. Research on pursuit theory and its application to space missions[D]. Changsha:National University of Defense Technology, 2010(in Chinese). [17] YANG T, HU Z, YANG L. Cooperative control for satellite formation reconfiguration via cyclic pursuit strategy[J]. Advanced Materials Research, 2014, 875-877:1153-1159. [18] MALLIK G R, SINHA A. A study of balanced circular formation under deviated cyclic pursuit strategy[J]. IFAC-PapersOnLine, 2015, 48(5):41-46. [19] 罗建军, 周亮, 蒋祺祺, 等. 航天器编队的六自由度循环追踪协同控制[J]. 宇航学报, 2017, 38(2):166-175. LUO J J, ZHOU L, JIANG Q Q, et al. 6 DOF coordinated control using cyclic pursuit for space formation[J]. Journal of Astronautics, 2017, 38(2):166-175(in Chinese). [20] CECCARLLI N, MARCO M D, GARULLI A, et al. Collective circular motion of multi-vehicle systems[J]. Automatica, 2008, 44(12):3025-3035. |