[1] 王明明, 罗建军, 余敏. 冗余空间机械臂抓捕自旋卫星后的消旋控制[J]. 宇航学报, 2018, 39(5):550-561. WANG M M, LUO J J, YU M. Detumbling control for kinematically redundant space manipulator post-grasping a rotational satellite[J]. Journal of Astronautics, 2018, 39(5):550-561(in Chinese). [2] 路勇, 刘晓光, 周宇. 空间翻滚非合作目标消旋技术发展综述[J]. 航空学报, 2018, 39(1):012302. LU Y, LIU X G, ZHOU Y. Review of detumbling technologies for active removal of uncooperative targets[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):021302(in Chinese). [3] HILLENBRAND U, LAMPARIELLO R. Motion and parameter estimation of a free-floating space object from range data for motion prediction[C]//8th International Symposium on Artificial Intelligence, Robotics and Automation in Space, 2005. [4] BOISSONNAT J D. Geometric structures for three-dimensional shape representation[J]. ACM Tram Graphics, 1984,3(4):266-286. [5] OBLONSEK C, GUID N. A fast surface-based procedure for object reconstruction from 3D scattered points[J]. Computer Vision and Image Understanding, 1998, 69(2):185-195. [6] HOPPE H, DEROSE T, DUCHAMP T. Surface reconstruction from unorganized points[J]. ACM Proceedings of Siggraph, 1992, 26(2):71-78. [7] 吴晟, 孙晟昕, 魏承. 基于机器人柔性毛刷的空间翻滚目标消旋[J]. 航空学报, 2019, 40(5):422587. WU S, SUN S X, WEI C. Tumbling target despun based on robotic flexible brush[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5):422587(in Chinese). [8] HIRZINGER G, LANDZETTEL K, FAGERER C. Telerobotics with large time delays -the ROTEX experiment[C]//IEEE/RSJ International Conference on Intelligent Robots and System, 1994. [9] KHAMSEH B H, GHORBANI S, JANABI-SHARIFI F. Unscented Kalman filter state estimation for manipulating unmanned aerial vehicles[J]. Aerospace Science and Technology, 2019,92:446-463. [10] GREENSPAN M, SHANG L, JASIOBEDZKI P. Efficient tracking with the bounded Hough transform[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004:520-527. [11] AGHILI F. A prediction and motion-planning scheme for visually guided robotic capturing of free-floating tumbling objects with uncertain dynamics[J]. IEEE Transactions on Robotics, 2012, 28(3):634-649. [12] FOKA A F, TRAHANIAS P E. Predictive autonomous robot navigation[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, 2002. [13] SUNG R C, DAN F, RUS D. Trajectory clustering for motion prediction[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012. [14] PENG H, BAI X L. Improving orbit prediction accuracy through supervised machine learning[J]. Advances in Space Research, 2018,61:2628-2646. [15] RASMUSSEN E C, WILLIAMS C K I. Gaussian processes for machine learning[M]. Cambridge:The MIT Press, 2005. [16] 何志昆, 刘光斌, 赵曦晶. 高斯过程回归方法综述[J]. 控制与决策, 2013, 28(8):1121-1129. HE Z K, LIU G B, ZHAO X J. Overview of Gaussian process regression[J]. Control and Decision, 2013, 28(8):1121-1129(in Chinese). [17] HERAVI J E, KHANMOHAMMADI S. Long term trajectory prediction of moving objects using Gaussian process[C]//First International Conference on Robot, 2011. [18] KIM E, CHOI S, OH S. A robust autoregressive Gaussian process motion model using l1-norm based low-rank kernel matrix approximation[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014. [19] SNELSON L E. Flexible and efficient Gaussian process models for machine learning[D]. London:University of London, 2007. [20] ANDRIEU C, FREITAS N D, DOUCET A, et al. An introduction to MCMC for machine learning[J]. Machine Learning, 2003, 50:5-43. [21] GAO Y S. Github[EB/OL].(2013-11-13)[2020-04-27].http:11gitub.com/tyanshuaicao/gp_cholqr. [22] GULER D C, RAITOHARJU M, PICHE R. Nanosatellite attitude estimation using Kalman-type filters with non-Gaussian noise[J]. Aerospace Science and Technology, 2019, 92:66-76. |