Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (21): 532356.doi: 10.7527/S1000-6893.2025.32356
• Special Issue: 60th Anniversary of Aircraft Strength Research Institute of China • Previous Articles
Baoquan SHI1,2,3(
), Jiaming ZHOU1, Wendong ZHANG3,4, Xianmin CHEN3,4, Qian HE3,4
Received:2025-06-03
Revised:2025-06-17
Accepted:2025-07-17
Online:2025-07-28
Published:2025-07-25
Contact:
Baoquan SHI
E-mail:bqshi@xidian.edu.cn
Supported by:CLC Number:
Baoquan SHI, Jiaming ZHOU, Wendong ZHANG, Xianmin CHEN, Qian HE. A network for fatigue crack segmentation and quantification using frequency-domain enhancement and linear attention mechanism[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(21): 532356.
Table 1
Segmentation results for different network models
| 网络模型 | Pr/% | Re/% | F1/% | mIoU/% |
|---|---|---|---|---|
| DeepLabv3+[ | 72.82 | 74.58 | 73.69 | 61.33 |
| DeepCrack[ | 77.14 | 73.16 | 75.10 | 61.75 |
| UNet-ResNet34[ | 77.28 | 75.21 | 76.23 | 60.02 |
| Swin Transformer[ | 69.99 | 74.98 | 72.40 | 59.57 |
| TransUNet[ | 71.06 | 77.54 | 74.16 | 61.53 |
| DscNet[ | 79.32 | 74.47 | 76.82 | 63.11 |
| FAT-Net[ | 79.36 | 72.81 | 75.94 | 64.24 |
| DTrc-Net[ | 80.66 | 76.90 | 78.74 | 67.81 |
| CT-CrackSeg[ | 75.35 | 77.42 | 76.37 | 62.02 |
| DECS-Net[ | 79.84 | 78.61 | 79.22 | 62.83 |
| CrackDAM-Net | 83.11 | 77.56 | 80.24 | 68.05 |
Table 2
Comparison of performance, scale and inference speed of different network models
| 网络模型 | MAC/G | 参数量/M | FPS |
|---|---|---|---|
| DeepLabv3+[ | 22.14 | 59.23 | 30.64 |
| DeepCrack[ | 136.80 | 30.91 | 27.35 |
| UNet-ResNet34[ | 90.13 | 69.30 | 41.07 |
| Swin Transformer[ | 114.25 | 59.83 | 21.74 |
| TransUNet[ | 33.4 | 105.32 | 20.04 |
| DscNet[ | 15.75 | 25.85 | 39.19 |
| FAT-Net[ | 42.8 | 29.62 | 28.00 |
| DTrc-Net[ | 123.2 | 63.45 | 28.78 |
| CT-CrackSeg[ | 41.62 | 22.88 | 15.53 |
| DECS-Net[ | 26.08 | 68.86 | 30.02 |
| CrackDAM-Net | 25.24 | 63.89 | 37.36 |
| [1] | WANG F. Application of deep learning algorithm in crack detection of green building materials[C]∥2022 6th Asian Conference on Artificial Intelligence Technology (ACAIT). Piscataway: IEEE Press, 2022: 1-6. |
| [2] | WANG Y T, SHEN W W. Mechanical parts detection algorithm based on enhanced faster R-CNN[C]∥2021 China Automation Congress (CAC). Piscataway: IEEE Press, 2021: 4348-4353. |
| [3] | DING K Y, DING Z H, ZHANG Z B, et al. SCD-YOLO: A novel object detection method for efficient road crack detection[J]. Multimedia Systems, 2024, 30(6): 351. |
| [4] | LIU Z, ZHOU B. Research and application on the improved SSD chip defect inspection algorithm[C]∥2021 IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE). Piscataway: IEEE Press, 2021: 551-555. |
| [5] | TAO H Q, LIU B X, CUI J Q, et al. A convolutional-transformer network for crack segmentation with boundary awareness[C]∥2023 IEEE International Conference on Image Processing (ICIP). Piscataway: IEEE Press, 2023: 86-90. |
| [6] | ZHENG W W, JIANG X Y, FANG Z J, et al. TV-Net: A structure-level feature fusion network based on tensor voting for road crack segmentation[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(6): 5743-5754. |
| [7] | ZHANG Q, CHEN S S, WU Y, et al. Improved U-Net network asphalt pavement crack detection method[J]. PLoS One, 2024, 19(5): e0300679. |
| [8] | ZHOU H P, DENG B, SUN K L, et al. UTE-CrackNet: Transformer-guided and edge feature extraction U-shaped road crack image segmentation[J]. The Visual Computer, 2025, 41(4): 2271-2283. |
| [9] | LIU H J, YANG J, MIAO X Y, et al. CrackFormer network for pavement crack segmentation[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(9): 9240-9252. |
| [10] | SHAN J H, HUANG Y, JIANG W. DCUFormer: Enhancing pavement crack segmentation in complex environments with dual-cross/upsampling attention[J]. Expert Systems with Applications, 2025, 264: 125891. |
| [11] | LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: Hierarchical vision transformer using shifted windows[C]∥2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2021: 9992-10002. |
| [12] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2016: 770-778. |
| [13] | PATRO B N, NAMBOODIRI V P, AGNEESWARAN V S. SpectFormer: Frequency and attention is what you need in a vision transformer[C]∥2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) . Piscataway: IEEE Press, 2017: 1800-1807. |
| [14] | SHI W Z, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2016: 1874-1883. |
| [15] | CHOLLET F. Xception: Deep learning with depthwise separable convolutions[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2017: 1800-1807. |
| [16] | GU A, DAO T. Mamba: Linear-time sequence modeling with selective state spaces[DB/OL]. arXiv preprint:2312. 00752, 2024. |
| [17] | HAN D C, WANG Z Y, XIA Z F, et al. Demystify Mamba in vision: A linear attention perspective[C]∥38th Conference on Neural Information Processing Systems (NeurIPS 2024). Vancouver: OpenReview, 2024. |
| [18] | BLUM H. Biological shape and visual science (part I)[J]. Journal of Theoretical Biology, 1973, 38(2): 205-287. |
| [19] | BAI X, LATECKI L J. Discrete skeleton evolution[M]∥Energy Minimization Methods in Computer Vision and Pattern Recognition. Berlin, Heidelberg: Springer, 2007: 362-374. |
| [20] | MONTANARI U. A method for obtaining skeletons using a Quasi-Euclidean distance[J]. Journal of the ACM, 1968, 15(4): 600-624. |
| [21] | SHI Y, CUI L M, QI Z Q, et al. Automatic road crack detection using random structured forests[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(12): 3434-3445. |
| [22] | YANG F, ZHANG L, YU S J, et al. Feature pyramid and hierarchical boosting network for pavement crack detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(4): 1525-1535. |
| [23] | SHI Y, CUI L M, QI Z Q, et al. Automatic road crack detection using random structured forests[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(12): 3434-3445. |
| [24] | ZOU Q, CAO Y, LI Q Q, et al. CrackTree: Automatic crack detection from pavement images[J]. Pattern Recognition Letters, 2012, 33(3): 227-238. |
| [25] | ZOU Q, ZHANG Z, LI Q Q, et al. DeepCrack:Learning hierarchical convolutional features for crack detection[J]. IEEE Transactions on Image Processing, 2018, 28(3): 1498-1512. |
| [26] | CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]∥Computer Vision-ECCV 2018. Cham: Springer, 2018: 833-851. |
| [27] | LIU Y H, YAO J, LU X H, et al. DeepCrack: A deep hierarchical feature learning architecture for crack segmentation[J]. Neurocomputing, 2019, 338: 139-153. |
| [28] | LAU S L H, CHONG E K P, YANG X, et al. Automated pavement crack segmentation using U-net-based convolutional neural network[J]. IEEE Access, 2020, 8: 114892-114899. |
| [29] | CHEN J, LU Y, YU Q, et al. TransUNet: Transformers make strong encoders for medical image segmentation[DB/OL]. arXiv preprint: 2102. 04306, 2021. |
| [30] | PANG J, ZHANG H, ZHAO H, et al. DcsNet: A real-time deep network for crack segmentation[J]. Signal, Image and Video Processing, 2022, 16(4): 911-919. |
| [31] | WU H S, CHEN S H, CHEN G L, et al. FAT-Net: Feature adaptive transformers for automated skin lesion segmentation[J]. Medical Image Analysis, 2022, 76: 102327. |
| [32] | XIANG C, GUO J J, CAO R, et al. A crack-segmentation algorithm fusing transformers and convolutional neural networks for complex detection scenarios[J]. Automation in Construction, 2023, 152: 104894. |
| [33] | TAO H Q, LIU B X, CUI J Q, et al. A convolutional-transformer network for crack segmentation with boundary awareness[C]∥2023 IEEE International Conference on Image Processing (ICIP). Piscataway: IEEE Press, 2023: 86-90. |
| [34] | ZHANG J M, ZENG Z G, SHARMA P K, et al. A dual encoder crack segmentation network with Haar wavelet-based high–low frequency attention[J]. Expert Systems with Applications, 2024, 256: 124950. |
| [1] | Lingjie MENG, Hongguang LI, Xinjun LI. SAR image simulation method guided by geomorphic category information [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(7): 331003-331003. |
| [2] | Guixian QU, Dongyang LIU, Xu YANG, Tian QIU, Chuankai LIU, Shuiting DING, Shuzheng YUAN, Kan GUO. Remaining useful life prediction method based on temporal information enhancement of sensors [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(17): 231634-231634. |
| [3] | Chuanyun WANG, Yang SU, Linlin WANG, Tian WANG, Jingjing WANG, Qian GAO. Multi-object continuous robust tracking algorithm for anti-UAV swarm [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 329017-329017. |
| [4] | Yueteng WU, Dun BA, Juan DU, Yunfei LI, Juntao CHANG. Compressor flow field reconstruction method based on deep attention networks [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(24): 630580-630580. |
| [5] | Xiangxi KONG, Wenyuan QIN, Piaoyi SU, Yongzhao HUA, Xiwang DONG, Li WANG, Ying SU, Kun LYU. Damage assessment algorithm based on deep learning and fuzzy analytic hierarchy process [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(19): 329503-329503. |
| [6] | Yonggang CHEN, Kangni LIU, Shuai WANG. Fault knowledge graph construction for aviation equipment based on BiGRU⁃Attention improvement [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(18): 229916-229916. |
| [7] | Yuanhao HU, Yibo SONG, Jiahui LIU, Xiaoli ZHAO, Wenxiang DENG, Jian HU, Jianyong YAO. Fault diagnosis of electro-hydraulic proportional servo valves based on attention convolutional capsule networks [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(15): 630407-630407. |
| [8] | Aoze YU, Weiwei WEI, Ping WANG, Jinqiang ZHANG, Wenxiong KE. Small target detection algorithm for UAV based on patch⁃wise co⁃attention [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 629148-629148. |
| [9] | Yanfang LIU, Jiayu SHE, Qiufan YUAN, Rui ZHOU, Naiming QI. Real⁃time small target detection networks for UAV remote sensing [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 630119-630119. |
| [10] | Junyu LI, Qiankun LIU, Ying FU. Infrared small object detection based on attention mechanism [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 628959-628959. |
| [11] | Jiqiang GAN, Xiaoping WANG. Surface defect detection of fiber placement based on virtual sample generation [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 428624-428624. |
| [12] | Zhiqiang FENG, Zhijun XIE, Zhengwei BAO, Kewei CHEN. Real⁃time dense small object detection algorithm for UAV based on improved YOLOv5 [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 327106-327106. |
| [13] | Baohui JIA, Fan JIANG, Yuxin WANG, Du WANG. Fault diagnosis method based on civil aircraft maintenance text data [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 326598-326598. |
| [14] | Guotao MAO, Tianmin DENG, Nanjing YU. Object detection in UAV images based on multi-scale split attention [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 326738-326738. |
| [15] | Yi ZHANG, Yan ZHANG, Yu ZHANG, Yong ZHANG, Di LIU. Infrared aircraft target detection method based on multi-level feature enhancement fusion [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 629220-629220. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

