Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (19): 329503.doi: 10.7527/S1000-6893.2023.29503
• Electronics and Electrical Engineering and Control • Previous Articles
Xiangxi KONG1, Wenyuan QIN1, Piaoyi SU2, Yongzhao HUA1(), Xiwang DONG1,2, Li WANG3, Ying SU3, Kun LYU3
Received:
2023-08-31
Revised:
2023-09-25
Accepted:
2023-11-01
Online:
2023-11-09
Published:
2023-11-07
Contact:
Yongzhao HUA
E-mail:yongzhaohua@buaa.edu.cn
Supported by:
CLC Number:
Xiangxi KONG, Wenyuan QIN, Piaoyi SU, Yongzhao HUA, Xiwang DONG, Li WANG, Ying SU, Kun LYU. Damage assessment algorithm based on deep learning and fuzzy analytic hierarchy process[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(19): 329503.
Table 3
Comparative experimental results of dual-level Yolov5 detection network and two classical algorithms
场景 | 对象类型 | 准确率 | 精确率 | 召回率 | F1分数 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
本文 | Mask R-CNN | RA-CNN | 本文 | Mask R-CNN | RA-CNN | 本文 | Mask R-CNN | RA-CNN | 本文 | Mask R-CNN | RA-CNN | ||
可见光 | 装甲车 | 0.91 | 0.89 | 0.87 | 0.92 | 0.90 | 0.86 | 0.89 | 0.83 | 0.92 | 0.91 | 0.87 | 0.89 |
红外 | 装甲车 | 0.90 | 0.83 | 0.89 | 0.89 | 0.86 | 0.87 | 0.88 | 0.81 | 0.91 | 0.89 | 0.84 | 0.89 |
可见光 | 战斗机 | 0.94 | 0.93 | 0.90 | 0.92 | 0.92 | 0.91 | 0.91 | 0.92 | 0.86 | 0.92 | 0.92 | 0.88 |
红外 | 战斗机 | 0.93 | 0.88 | 0.88 | 0.87 | 0.88 | 0.89 | 0.85 | 0.82 | 0.82 | 0.86 | 0.85 | 0.85 |
红外 | 装甲车、战斗机 | 0.89 | 0.81 | 0.83 | 0.86 | 0.84 | 0.81 | 0.83 | 0.83 | 0.84 | 0.85 | 0.84 | 0.82 |
Table 6
Assessment results of multiple component damages
机翼 | 尾翼 | 机舱 | 毁伤等级 | 置信度 |
---|---|---|---|---|
0.183 4 | 0.119 5 | 0.140 2 | 轻微毁伤 | 0.594 9 |
0.256 6 | 0.067 8 | 0.177 3 | 轻微毁伤 | 0.455 9 |
0.270 0 | 0.204 6 | 0.579 9 | 中度毁伤 | 0.304 1 |
0.368 8 | 0.693 6 | 0.340 2 | 中度毁伤 | 0.369 6 |
0.421 1 | 0.120 0 | 0.446 7 | 中度毁伤 | 0.437 2 |
0.514 3 | 0.354 0 | 0.294 4 | 中度毁伤 | 0.502 2 |
0.351 3 | 0.306 4 | 0.470 4 | 中度毁伤 | 0.614 8 |
0.354 4 | 0.410 2 | 0.435 7 | 中度毁伤 | 0.641 0 |
0.592 3 | 0.331 5 | 0.800 6 | 重度毁伤 | 0.409 5 |
0.471 1 | 0.746 7 | 0.503 8 | 重度毁伤 | 0.412 4 |
0.690 4 | 0.472 0 | 0.618 1 | 完全毁伤 | 0.428 4 |
0.391 8 | 0.900 0 | 0.672 4 | 完全毁伤 | 0.643 3 |
1 | 祝学军, 赵长见, 梁卓, 等. OODA智能赋能技术发展思考[J]. 航空学报, 2021, 42(4): 524332. |
ZHU X J, ZHAO C J, LIANG Z, et al. Thoughts on technology development of OODA empowered with AI[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524332 (in Chinese). | |
2 | 孙智孝, 杨晟琦, 朴海音, 等. 未来智能空战发展综述[J]. 航空学报, 2021, 42(8): 525799. |
SUN Z X, YANG S Q, PIAO H Y, et al. A survey of air combat artificial intelligence[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525799 (in Chinese). | |
3 | 裴扬, 宋笔锋, 石帅. 飞机作战生存力分析方法研究进展与挑战[J]. 航空学报, 2016, 37(1): 216-234. |
PEI Y, SONG B F, SHI S. Analysis method of aircraft combat survivability: Progress and challenge[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 216-234 (in Chinese). | |
4 | 勾涛. 基于图像分析的毁伤评估系统关键技术研究[D]. 长春: 吉林大学, 2019: 1-4. |
GOU T. Research on key technologies of damage assessment system based on image analysis[D]. Changchun: Jilin University, 2019: 1-4. (in Chinese). | |
5 | HUANG Y, SHAO C S, WU B, et al. State-of-the-art review on Bayesian inference in structural system identification and damage assessment[J]. Advances in Structural Engineering, 2019, 22(6): 1329-1351. |
6 | 刘彦, 裴晓羽, 吕中杰, 等. 基于层次分析-模糊综合评价法的相控阵雷达毁伤评估[J]. 北京理工大学学报, 2016, 36(10): 996-1000. |
LIU Y, PEI X Y, LYU Z J, et al. Damage assessment of phased array antenna based on analytic hierarchy process and fuzzy comprehensive assessment[J]. Transactions of Beijing Institute of Technology, 2016, 36(10): 996-1000 (in Chinese). | |
7 | 周燕, 陈中, 李为民. 基于BP神经网络的弹炮结合系统作战效能评估[J]. 系统工程与电子技术, 2005, 27(1): 84-86. |
ZHOU Y, 陈中, LI W M. Evaluation of operational effectiveness for anti-aircraft Gun-missile system based on BP neural networks[J]. Systems Engineering and Electronics, 2005, 27(1): 84-86 (in Chinese). | |
8 | 曲婉嘉, 徐忠林, 张柏林, 等. 基于贝叶斯网络云模型的目标毁伤评估方法[J]. 兵工学报, 2016, 37(11): 2075-2084. |
QU W J, XU Z L, ZHANG B L, et al. Battle damage assessment method based on BN-cloud model[J]. Acta Armamentarii, 2016, 37(11): 2075-2084 (in Chinese). | |
9 | 陈麒, 祝明波, 刘旭东. 基于图像的打击效果评估研究综述[J]. 舰船电子工程, 2013, 33(4): 10-12, 27. |
CHEN Q, ZHU M B, LIU X D. Summarized of battle damage assessment based on image[J]. Ship Electronic Engineering, 2013, 33(4): 10-12, 27 (in Chinese). | |
10 | 魏鑫, 李晓婷. 基于模糊推理的综合毁伤效果评估方法[J]. 智能计算机与应用, 2022, 12(7): 146-150. |
WEI X, LI X T. Comprehensive damage effectiveness evaluation method based on fuzzy reasoning[J]. Intelligent Computer and Applications, 2022, 12(7): 146-150 (in Chinese). | |
11 | 李京, 杨根源. 基于神经网络的地面目标威胁度分析[J]. 兵工自动化, 2012, 31(3): 15-18. |
LI J, YANG G Y. Analysis of ground targets threatening level based on neural network[J]. Ordnance Industry Automation, 2012, 31(3): 15-18 (in Chinese). | |
12 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. |
13 | 张宗腾, 张琳, 谢春燕, 等. 基于改进GA-BP神经网络的目标毁伤效果评估[J]. 火力与指挥控制, 2021, 46(11): 43-48. |
ZHANG Z T, ZHANG L, XIE C Y, et al. Battle damage effect assessment based on improved GA-BP neural network[J]. Fire Control & Command Control, 2021, 46(11): 43-48 (in Chinese). | |
14 | 余丽山, 李彦彬, 赵永龙, 等. 基于BP神经网络的飞机抗毁伤能力评估[J]. 弹箭与制导学报, 2018, 38(1): 23-26. |
YU L S, LI Y B, ZHAO Y L, et al. Assessment of aircraft anti damage capability based on BP neural network[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2018, 38(1): 23-26 (in Chinese). | |
15 | 朱亚红, 汪民乐, 敬斌. 基于BP神经网络的多源桥梁毁伤信息特征层融合[J]. 战术导弹技术, 2012(2): 116-121. |
ZHU Y H, WANG M L, JING B. The feature-level fusion of the multi-image damage information about the bridge based on the BP neural network[J]. Tactical Missile Technology, 2012(2): 116-121 (in Chinese). | |
16 | 徐艺博, 于清华, 王炎娟, 等. 基于多源信息融合的巡飞弹对地目标识别与毁伤评估[J]. 系统仿真学报, 2024, 36(2): 511-521. |
XU Y B, YU Q H, WANG Y J, et al. Ground target recognition and damage assessment of patrol missiles based on multi-source information fusion[J]. Journal of System Simulation, 2024, 36(2): 511-521 (in Chinese). | |
17 | XU J L, ZENG F, LIU W, et al. Damage detection and level classification of roof damage after typhoon faxai based on aerial photos and deep learning[J]. Applied Sciences, 2022, 12(10): 4912. |
18 | HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]∥2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2021: 13708-13717. |
19 | ZHU X K, LYU S C, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]∥2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). Piscataway: IEEE Press, 2021: 2778-2788. |
20 | MILLS-TETTEY A, STENT A, DIAS M B. The dynamic Hungarian algorithm for the assignment problem with changing costs: CMU-RI-TR-07-27[R]. Pittsburgh: Carnegie Mellon University, 2007. |
21 | 彭庭睿, 刘海鹏, 刘彦, 等. 基于模糊层次分析法和图像对比毁伤评估法的目标权重计算方法[J]. 兵工学报, 2021, 42(S1): 173-180. |
PENG T R, LIU H P, LIU Y, et al. Target weight calculation method based on fuzzy analytic hierarchy process and image contrast damage assessment method[J]. Acta Armamentarii, 2021, 42(S1): 173-180 (in Chinese). | |
22 | REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: A metric and a loss for bounding box regression[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2019: 658-666. |
23 | 娄文忠, 苏子龙, 汪金奎, 等. 弹载图像探测器广域协同探测算法[J]. 兵工学报, 2021, 42(11): 2388-2395. |
LOU W Z, SU Z L, WANG J K, et al. Wide-area cooperative detection algorithm of missile-borne image detector[J]. Acta Armamentarii, 2021, 42(11): 2388-2395 (in Chinese). | |
24 | HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]∥2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2017: 2980-2988. |
25 | FU J L, ZHENG H L, MEI T. Look closer to see better: recurrent attention convolutional neural network for fine-grained image recognition[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2017: 4476-4484. |
[1] | Jiaqi LIU, Rongqian CHEN, Jinhua LOU, Xu HAN, Hao WU, Yancheng YOU. Aerodynamic shape optimization of high-speed helicopter rotor airfoil based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529828-529828. |
[2] | Chuanyun WANG, Yang SU, Linlin WANG, Tian WANG, Jingjing WANG, Qian GAO. Multi-object continuous robust tracking algorithm for anti-UAV swarm [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 329017-329017. |
[3] | Xudong LUO, Yiquan WU, Jinlin CHEN. Research progress on deep learning methods for object detection and semantic segmentation in UAV aerial images [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 28822-028822. |
[4] | Haiqiao LIU, Meng LIU, Zichao GONG, Jing DONG. A review of image matching methods based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 28796-028796. |
[5] | Yonggang CHEN, Kangni LIU, Shuai WANG. Fault knowledge graph construction for aviation equipment based on BiGRU⁃Attention improvement [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(18): 229916-229916. |
[6] | Yuanhao HU, Yibo SONG, Jiahui LIU, Xiaoli ZHAO, Wenxiang DENG, Jian HU, Jianyong YAO. Fault diagnosis of electro-hydraulic proportional servo valves based on attention convolutional capsule networks [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(15): 630407-630407. |
[7] | Junyu LI, Qiankun LIU, Ying FU. Infrared small object detection based on attention mechanism [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 628959-628959. |
[8] | Zhaochen CHU, Tao SONG, Ren JIN, Defu LIN. Vision-based air-to-air multi-UAVs tracking [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 629379-629379. |
[9] | Aoze YU, Weiwei WEI, Ping WANG, Jinqiang ZHANG, Wenxiong KE. Small target detection algorithm for UAV based on patch⁃wise co⁃attention [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 629148-629148. |
[10] | Jiqiang GAN, Xiaoping WANG. Surface defect detection of fiber placement based on virtual sample generation [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 428624-428624. |
[11] | Xin SU, Runcheng GUAN, Qiao WANG, Weizheng YUAN, Xianglian LYU, Yang HE. Ice area and thickness detection method based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729283-729283. |
[12] | Liqun CHEN, Xu ZOU, Lei ZHANG, Yingpan ZHU, Gang WANG, Jinyong CHEN. On⁃board intelligent target detection technology based on domestic commercial components [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 728860-728860. |
[13] | Pengyu LIU, Xueyao ZHU. Semantic parsing technology of air traffic control instruction in fusion airspace based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S1): 727592-727592. |
[14] | Zhiqiang FENG, Zhijun XIE, Zhengwei BAO, Kewei CHEN. Real⁃time dense small object detection algorithm for UAV based on improved YOLOv5 [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 327106-327106. |
[15] | Lei HE, Weiqi QIAN, Kangsheng DONG, Xian YI, Congcong CHAI. Aerodynamic characteristics modeling of iced airfoil based on convolution neural networks [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126434-126434. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 406
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 408
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341