1 |
FAN Y, MU A, MA T. Study on the application of energy storage system in offshore wind turbine with hydraulic transmission[J]. Energy Conversion & Management, 2016, 110: 338-346.
|
2 |
ZHANG W, LI C, PENG G, et al. A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load[J]. Mechanical Systems and Signal Processing, 2018, 100: 439-453.
|
3 |
MARCO M, MARK B, ISERMANN R. Fault-tolerant actuators and drives—structures, fault detection principles and applications [J]. Reviews in Control, 2009, 33(2): 136-148.
|
4 |
陈勇刚, 刘康妮, 王帅. 基于BiGRU-Attention改进的航空设备故障知识图谱构建研究[J/OL]. 航空学报[2024-05-10]. doi: 10.7527/S1000-6893.2024.29916 .
|
|
CHEN Y G, LIU K N, WANG S. Research on building a fault knowledge graph for aviation equipment based on BiGRU-Attention improvement [J/OL]. Acta Aeronautica et Astronautica Sinica [2024-05-10]. doi: 10.7527/S1000-6893.2024.29916 (in Chinese).
|
5 |
CHAO Q, XU Z, SHAO Y, et al. Hybrid model-driven and data-driven approach for the health assessment of axial piston pumps[J]. International Journal of Hydromechatronics, 2023, 6(1): 76-92.
|
6 |
KORDESTANI M, SAIF M, ORCHARD M E, et al. Failure prognosis and applications—a survey of recent literature[J]. IEEE Transactions on Reliability, 2019, 70(2): 728-748.
|
7 |
胡明辉, 高金吉, 江志农, 等. 航空发动机振动监测与故障诊断技术研究进展[J]. 航空学报, 2024, 45(4): 630194.
|
|
HU M H, GAO J J, JIANG Z N, et al. Research progress on vibration monitoring and fault diagnosis for aero-engine[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 630194 (in Chinese).
|
8 |
FANG X, YAO J, YIN X, et al. Physics-of-failure models of erosion wear in electrohydraulic servovalve, and erosion wear life prediction method[J]. Mechatronics, 2013, 23(8): 1202-1214.
|
9 |
STOJANOVIC V, PRSIC D. Robust identification for fault detection in the presence of non-gaussian noises: application to hydraulic servo drives[J]. Nonlinear Dynamics, 2020, 100(3): 2299-2313.
|
10 |
SAMADANI M, KWUIMY C A K, NATARAJ C. Fault detection and severity analysis of servo valves using recurrence quantification analysis[C]∥Annual Conference of the PHM Society, 2014.
|
11 |
LIU H, LIU D, LU C, et al. Fault diagnosis of hydraulic servo system using the unscented Kalman filter[J]. Asian Journal of Control, 2014, 16(6): 1713-1725.
|
12 |
TAMBURRANO P, PLUMMER A R, DISTASO E, et al. A review of direct drive proportional electrohydraulic spool valves: industrial state-of-the-art and research advancements[J]. Journal of Dynamic Systems, Measurement, and Control, 2019, 141(2): 020801.
|
13 |
ZHAO X, ZHU X, LIU J, et al. Model-assisted muti-source fusion hypergraph convolutional neural networks for intelligent few-shot fault diagnosis to electro-hydrostatic actuator[J]. Information Fusion, 2024, 104: 102186.
|
14 |
LIU C, WANG Y, PAN T, et al. Fault diagnosis of electro‐hydraulic servo valve using extreme learning machine[J]. International Transactions on Electrical Energy Systems, 2020, 30(7): e12419.
|
15 |
SHARIFI S, TIVAY A, REZAEI S M, et al. Leakage fault detection in electro-hydraulic servo systems using a nonlinear representation learning approach[J]. ISA Transactions, 2018, 73: 154-164.
|
16 |
WEI G, PENGFEI S, CHAO A, et al. Multisource electrohydraulic servo valve fault status diagnostic algorithm based on a message propagation mechanism[J]. Measurement Science and Technology, 2023, 34(5): 055302.
|
17 |
FU Y, CAI L, ZHENG G. Failure diagnosis of electro-hydraulic servo valve based on SA-PSO-SVM[J]. Journal of Mechanical Science and Technology, 2022, 36(12): 5971-5976.
|
18 |
权凌霄, 郭海鑫, 盛世伟, 等. 采用“GA+LM”优化BP神经网络的电液伺服阀故障诊断[J]. 中国机械工程,2018, 29(5): 505-510.
|
|
QUAN L X, GUO H X, SHENG S W, et al. Fault diagnosis of electro hydraulic servo valves based on GA+LM algorithm optimized BP neural networks[J]. China Mechanical Engineering, 2018, 29(5): 505-510 (in Chinese).
|
19 |
贾春玉, 康凯旋, 高伟, 等. 基于CNN+LSTM神经网络的电液伺服阀故障预测[J]. 液压与气动, 2020(12): 173-181.
|
|
JIA C Y, KANG K X, GAO W, et al. Fault prediction of electro-hydraulic servo valve based on CNN +LSTM neural network[J]. Chinese Hydraulics & Pneumatics, 2020(12): 173-181 (in Chinese).
|
20 |
LIU S, JI Z, WANG Y, et al. Multi-feature fusion for fault diagnosis of rotating machinery based on convolutional neural network[J]. Computer Communications, 2021, 173: 160-169.
|
21 |
SHI Y, WANG Z, DU X, et al. Research on the membrane fouling diagnosis of MBR membrane module based on ECA-CNN[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107649.
|
22 |
TANG X, GU X, WANG J, et al. A bearing fault diagnosis method based on feature selection feedback network and improved DS evidence fusion[J]. IEEE Access, 2020, 8: 20523-20536.
|