Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (24): 630580.doi: 10.7527/S1000-6893.2024.30580
• special column • Previous Articles
Yueteng WU1,2,3, Dun BA1,2(), Juan DU1,2, Yunfei LI4, Juntao CHANG5
Received:
2024-04-23
Revised:
2024-04-24
Accepted:
2024-06-03
Online:
2024-06-19
Published:
2024-06-17
Contact:
Dun BA
E-mail:badun@iet.cn
Supported by:
CLC Number:
Yueteng WU, Dun BA, Juan DU, Yunfei LI, Juntao CHANG. Compressor flow field reconstruction method based on deep attention networks[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(24): 630580.
Table 3
Details of parameters in symmetric convolutional neural network
模块 | 层名称 | 卷积核/步长/填充 | 输出尺寸 |
---|---|---|---|
线性模块 | 全连接层1 | 5 632 | |
全连接层2 | 1 536 | ||
塑形 | 塑形层 | 256×2×3 | |
转置卷积×7 | 转置卷积1 | 2×2/2/0 | 128×4×6 |
ELU | 128×4×6 | ||
转置卷积 | 转置卷积8 | 2×2/2/0 | 1×512×768 |
ELU | 1×512×768 | ||
卷积×7 | 卷积1 | 2×2/2/0 | 2×256×384 |
ELU | 2×256×384 | ||
卷积 | 卷积8 | 2×2/2/0 | 256×2×3 |
ELU | 256×2×3 | ||
平均池化层 | 2×2/2/0×1 | 256×1×2 | |
塑形 | 扁平化层 | 512 | |
线性模块×5 | 全连接层3 | 1 024/512/128/32/1 | |
ELU | 1 024/512/128/32/1 |
Table 4
Dataset splitting
名称 | 相对换算转速 | 半径/m |
---|---|---|
训练集 | 0.8、0.83、0.85、0.87、0.89、0.91、0.93、0.95、0.97、0.99、1.015 | 0.18、0.21、0.24、0.27、0.30、0.33、0.36 |
验证集 | 0.86、0.90、0.94、0.98以及训练集转速上其他半径 | 0.18、0.21、0.24、0.27、0.30、0.33、0.36(部分工况增加了其他半径,如0.195、0.285等) |
测试集 | 0.88、0.92、0.96、1.00以及训练集转速上其他半径 | 0.18、0.21、0.24、0.27、0.30、0.33、0.36(部分工况增加了其他半径,如0.255、0.345等) |
1 | 张伟伟, 寇家庆, 刘溢浪. 智能赋能流体力学展望[J]. 航空学报, 2021, 42(4): 524689. |
Zhang W W, Kou J Q, Liu Y L. Intelligent empowerment in fluid dynamics perspective[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524689 (in Chinese). | |
2 | 张伟伟, 朱林阳, 刘溢浪, 等. 机器学习在湍流模型构建中的应用进展[J]. 空气动力学学报, 2019, 37(3): 444-454. |
ZHANG W W, ZHU L Y, LIU Y L, et al. Progresses in the application of machine learning in turbulence modeling[J]. Acta Aerodynamica Sinica, 2019, 37(3): 444-454 (in Chinese). | |
3 | 陈海昕, 邓凯文, 李润泽. 机器学习技术在气动优化中的应用[J]. 航空学报, 2019, 40(1): 522480. |
CHEN H X, DENG K W, LI R Z. Utilization of machine learning technology in aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522480 (in Chinese). | |
4 | LUI H F S, WOLF W R. Construction of reduced-order models for fluid flows using deep feedforward neural networks[J]. Journal of Fluid Mechanics, 2019, 872: 963-994. |
5 | 陈皓, 郭明明, 田野, 等.卷积神经网络在流场重构研究中的进展[J].力学学报, 2022, 54(9): 2343-2360. |
Chen H, Guo M M, Tian Y, et al. The progress of convolutional neural networks in flow field reconstruction research. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2343-2360 (in Chinese). | |
6 | YANG Z S, DONG Y D, DENG X G, et al. AMGNET: multi-scale graph neural networks for flow field prediction[J]. Connection Science, 2022, 34(1): 2500-2519. |
7 | CAO W B, SONG J H, ZHANG W W. A solver for subsonic flow around airfoils based on physics-informed neural networks and mesh transformation[J]. Physics of Fluids, 2024, 36(2): 027134. |
8 | WANG J, HE C, LI R Z, et al. Flow field prediction of supercritical airfoils via variational autoencoder based deep learning framework[J]. Physics of Fluids, 2021, 33(8): 086108. |
9 | SABATER C, STÜRMER P, BEKEMEYER P. Fast predictions of aircraft aerodynamics using deep-learning techniques[J]. AIAA Journal, 2022, 60(9): 5249-5261. |
10 | JIN X W, CHENG P, CHEN W L, et al. Prediction model of velocity field around circular cylinder over various Reynolds numbers by fusion convolutional neural networks based on pressure on the cylinder[J]. Physics of Fluids, 2018, 30(4): 047105. |
11 | SEKAR V, JIANG Q H, SHU C, et al. Fast flow field prediction over airfoils using deep learning approach[J]. Physics of Fluids, 2019, 31(5): 057103. |
12 | HUI X Y, BAI J Q, WANG H, et al. Fast pressure distribution prediction of airfoils using deep learning[J]. Aerospace Science and Technology, 2020, 105: 105949. |
13 | DURU C, ALEMDAR H, BARAN O U. A deep learning approach for the transonic flow field predictions around airfoils[J]. Computers & Fluids, 2022, 236: 105312. |
14 | THUEREY N, WEIßENOW K, PRANTL L, et al. Deep learning methods for reynolds-averaged navier–stokes simulations of airfoil flows[J]. AIAA Journal, 2020, 58(1): 25-36. |
15 | ZUO K J, YE Z Y, ZHANG W W, et al. Fast aerodynamics prediction of laminar airfoils based on deep attention network[J]. Physics of Fluids, 2023, 35(3): 037127. |
16 | LI Y F, CHANG J T, KONG C, et al. Recent progress of machine learning in flow modeling and active flow control[J]. Chinese Journal of Aeronautics, 2022, 35(4): 14-44. |
17 | LI Y F, CHANG J T, WANG Z A, et al. Inversion and reconstruction of supersonic cascade passage flow field based on a model comprising transposed network and residual network[J]. Physics of Fluids, 2019, 31(12): 126102. |
18 | 杜周, 徐全勇, 宋振寿, 等. 基于深度学习的压气机叶型气动特性预测[J]. 航空动力学报, 2023, 38(9): 2251-2260. |
DU Z, XU Q Y, SONG Z S, et al. Prediction of aerodynamic characteristics of compressor blade profile based on deep learning[J]. Journal of Aerospace Power, 2023, 38(9): 2251-2260 (in Chinese). | |
19 | JIN Y, LI S, JUNG O. Prediction of flow properties on turbine vane airfoil surface from 3D geometry with convolutional neural network[C]∥ Proceedings of ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, 2019 |
20 | LI J X, LI Y Z, LIU T Y, et al. Multi-fidelity graph neural network for flow field data fusion of turbomachinery[J]. Energy, 2023, 285: 129405. |
21 | 冯云阳, 宋西镇, 袁巍, 等. 基于物理嵌入神经网络的叶栅损失模型[J]. 航空动力学报, 2023, 38(7): 1615-1625. |
FENG Y Y, SONG X Z, YUAN W, et al. Physics-informed neural networks based cascade loss model[J]. Journal of Aerospace Power, 2023, 38(7): 1615-1625 (in Chinese). | |
22 | YANG G A, YANG Y, LU Z Z, et al. STA-TSN: spatial-Temporal Attention Temporal Segment Network for action recognition in video[J]. PLoS One, 2022, 17(3): e0265115. |
23 | LI J N, WONG Y, ZHAO Q, et al. Attention transfer from web images for video recognition[C]∥ Proceedings of the 25th ACM international conference on Multimedia. New York: ACM, 2017: 1-9. |
24 | ZHAO Y C, ZHANG J P, DUAN R, et al. Lightweight target-aware attention learning network-based target tracking method[J]. Mathematics, 2022, 10(13): 2299. |
25 | WANG Y Q, LIU T Y, ZHANG D. Aerodynamic prediction on the off-design performance of a S-CO2 turbine based on deep learning[C]∥ Proceedings of ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition, 2021. |
26 | POST P, WINHART B, DI MARE F. Investigation of physics-informed neural networks based solution techniques for internal flows[C]∥Proceedings of ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition, 2022. |
27 | CHEN C F R, FAN Q F, PANDA R. CrossViT: cross-attention multi-scale vision transformer for image classification[C]∥2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2021: 347-356. |
28 | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[DB/OL]. arXiv preprint: 2010.11929, 2020. |
[1] | Jiaqi LIU, Rongqian CHEN, Jinhua LOU, Xu HAN, Hao WU, Yancheng YOU. Aerodynamic shape optimization of high-speed helicopter rotor airfoil based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529828-529828. |
[2] | Xudong LUO, Yiquan WU, Jinlin CHEN. Research progress on deep learning methods for object detection and semantic segmentation in UAV aerial images [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 28822-028822. |
[3] | Haiqiao LIU, Meng LIU, Zichao GONG, Jing DONG. A review of image matching methods based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 28796-028796. |
[4] | Zi WANG, Jinghao WANG, Yang LI, Zhang LI, Qifeng YU. Non-cooperative target pose estimation from monocular images based on lightweight neural network [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(22): 330248-330248. |
[5] | Tiancai WU, Honglun WANG, Bin REN, Guocheng YAN, Xingyu WU. Learning-based hierarchical coordination fault-tolerant method for hypersonic vehicles [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(22): 330191-330191. |
[6] | Yunxiang FAN, Huanan AI, Mingzhen WANG, Kai CAO, Xuejun LIU, Hongqiang LYU. Unsteady hydrodynamic load reconstruction of seaplane based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(20): 129882-129882. |
[7] | Junshen LI, Xiangyan MENG, Nuannuan SHI, Wei LI, Ninghua ZHU, Ming LI. Intelligent processing of optical neural networks: Technological evolution and future prospects [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(20): 630439-630439. |
[8] | Shaoyi LI, Yaqi ZHANG, Yue CHENG, Xi YANG, Liang ZHANG, Jian LIN, Zhongjie MENG. Scene abstract semantic synthesis model and its application in infrared dim and small target detection [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(20): 630702-630702. |
[9] | Xiangxi KONG, Wenyuan QIN, Piaoyi SU, Yongzhao HUA, Xiwang DONG, Li WANG, Ying SU, Kun LYU. Damage assessment algorithm based on deep learning and fuzzy analytic hierarchy process [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(19): 329503-329503. |
[10] | Zhaochen CHU, Tao SONG, Ren JIN, Defu LIN. Vision-based air-to-air multi-UAVs tracking [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 629379-629379. |
[11] | Junyu LI, Qiankun LIU, Ying FU. Infrared small object detection based on attention mechanism [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 628959-628959. |
[12] | Xin SU, Runcheng GUAN, Qiao WANG, Weizheng YUAN, Xianglian LYU, Yang HE. Ice area and thickness detection method based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729283-729283. |
[13] | Liqun CHEN, Xu ZOU, Lei ZHANG, Yingpan ZHU, Gang WANG, Jinyong CHEN. On⁃board intelligent target detection technology based on domestic commercial components [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 728860-728860. |
[14] | Pengyu LIU, Xueyao ZHU. Semantic parsing technology of air traffic control instruction in fusion airspace based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S1): 727592-727592. |
[15] | Lei HE, Weiqi QIAN, Kangsheng DONG, Xian YI, Congcong CHAI. Aerodynamic characteristics modeling of iced airfoil based on convolution neural networks [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126434-126434. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341