[1] ABRAMOWITZ A, SMITH T G, VU T, et al. Vertical drop test of a narrow-body transport fuselage section with overhead stowage bins:DOT/FAA/AR-01/100[R]. Washinton, D.C.:Federal Aviation Administration, 2002. [2] LOGUE T V, MCGUIRE R J, REINHARDT J W, et al. Vertical drop test of a narrow-body fuselage section with overhead stowage bins and auxiliary fuel tank on board:DOT/FAA/CT-94/116[R]. Washinton, D.C.:Federal Aviation Administration, 1995. [3] ABRAMOWITZ A, SMITH T G, VU T. Vertical drop test of a narrow-body transport fuselage section with conformable auxiliary fuel tank onboard:DOT/FAA/AR-00/56[R]. Washinton, D.C.:Federal Aviation Administration, 2000. [4] KAREN E, JACKSON, EDWIN L, et al. Crash simulation of a vertical drop test of a B737 fuselage section with overhead bins and luggage[R]. Hampton, VA:NASA Langley Research Center, 2001. [5] HASHEMI R. Sub-component dynamic tests on an Airbus A320 rear fuselage[R] Bedfordshire:Cranfield Impact Centre Ltd., 1994. [6] LEPAG F, CARCIENTE R. A320 fuselage section vertical drop test-Part 2 Test results:CEAT test report S95 5776/2[R]. Toulouse:CEAT, 1995. [7] LUTZENBURGER M. Simulation of the A320 section drop test using the hybrid code KRASH:DLR-Report IB 435-95/24[R]. Stuttgart:DLR, 1995. [8] MALHERBE B, LANGRAND B, CHARLES J L, et al. Improvement of crash models of large aeronautical structure[C]//ICAS 2000 Congress, 2000:1-10. [9] 刘小川, 郭军, 孙侠生, 等. 民机机身段和舱内设施坠撞试验及结构适坠性评估[J]. 航空学报, 2013, 34(9):2130-2140. LIU X C, GUO J, SUN X S, et al. Drop test and structure crashworthiness evaluation of civil airplane fuselage section with cabin interiors[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9):2130-2140(in Chinese). [10] 刘小川, 周苏枫, 孙侠生, 等. 民用飞机客舱地板下部结构吸能优化[J]. 机械科学与技术, 2011, 30(11):1968-1972. LIU X C, ZHOU S F, SUN X S, et al. Energy absorption optimization of the lower structure of civil aircraft sub-cabin structure[J]. Mechanical Science and Technology for Aerospace Engineering, 2011, 30(11):1968-1972(in Chinese). [11] 刘小川, 周苏枫,马君峰,等. 民机客舱下部吸能结构分析与试验相关性研究[J]. 航空学报, 2012, 33(12):2202-2210. LIU X C, ZHOU S F, MA J F, et al. Correlation study of crash analysis and test of civil airplane subfloor energy absorptionstructure[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12):2202-2210(in Chinese). [12] 牟让科, 刘小川. 民机机身结构和内部设施适坠性设计评估与验证指南[M]. 西安:西北工业大学出版社, 2016. MOU R K, LIU X C. Guide for evaluation and verification of the airframe structure and internal equipment design for civil aircraft[M]. Xi'an:Northwestern Polytechnical University Press, 2016(in Chinese). [13] 任毅如, 向锦武, 罗漳平, 等. 客舱地板斜撑杆对民机典型机身段耐撞性能的影响[J]. 航空学报, 2010, 31(2):271-276. REN Y R, XIANG J W, LUO Z P, et al. Influence of cabin floor diagonal strut on crashworthiness of typical fuselage section of civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(2):271-276(in Chinese). [14] XUE P, DING L, QIAO F, et al. Crashworthiness study of a civil aircraft fuselage section[J]. Latin American Journal of Solids & Structures, 2014, 11(9):1615-1627. [15] ZHU X, FENG Y, XUE X, et al. Evaluate the crashworthiness response of an aircraft fuselage section with luggage contained in the cargo hold[J]. International Journal of Crashworthiness, 2017(2):1-18. [16] ZOU T C, MOU H L, FENG Z Y. Research on effects of oblique struts on crashworthiness of composite fuse-lage sections[J]. Journal of Aircraft, 2012, 49(6):2059-2063. [17] FENG Z Y, MOU H L, ZOU T C, et al. Research on effects of composite skin on crashworthiness of composite fu-selage section[J]. International Journal of Crashworthiness, 2013, 18(5):459-464. [18] MOU H L, ZOU T C, FENG Z Y, et al. Crashworthiness analysis and evaluation of fuselage section with sub-floor composite sinusoidal specimens[J]. Latin American Journal of Solids and Structures, 2016, 13(6):1187-1202. [19] REN Y R, XIANG J W. Energy absorption structures design of civil aircraft to improve crashworthiness[J]. Aeronautical Journal, 2016, 118(1202):383-398. [20] WAIMER M, FESER T, SCHATROW P, et al. Crash concepts for CFRP transport aircraft-Comparison of the traditional bend frame concept versus the developments in a tension absorbers concept[J]. International Journal of Crashworthiness, 2018, 23(2):193-218. [21] WIGGENRAAD J F M, MICHIELSEN A L P J, SANTORO D, et al. Development of a crashworthy composite fuselage structure for a commuter aircraft:NLR-TP-99532[R]. Amsterdam:NedTrain Consulting NLR, 1999. [22] WAIMER M, KOHLGRÜBER D, KECK R, et al. Contribution to an improved crash design for a composite transport aircraft fuselage-Development of a kinematics model and an experimental component test setup[J]. CEAS Aeronautical Journal, 2013, 4:265-275. [23] MOSTAFA R. Virtual test & simulation[C]//Engineering, Operations & Technology|Boeing Research & Technology, 2013. [24] HACHENBERG D, LAVINGE V, MAHE M. Crashworthiness of fuselage hybrid structure[C]//Eighth Triennial International Aircraft Fire and Cabin Safety Research Conference (8IARCSFC), 2016. [25] ARNAUDEAU F, MAHE M, DELETOMBE E, et al. Crashworthiness of aircraft composites structures[C]//ASME 2002 International Mechanical Engineering Congress and Exposition, 2002:31-40. [26] DELSART D, PORTEMONT G, WAIMER M. Crash testing of a CFRP commercial aircraft sub-cargo fuselage section[J]. Procedia Structural Integrity, 2016, 2:2198-2205. [27] GUIDA M, MARULO F, ABRATE S. Advances in crash dynamics for aircraft safety[J]. Progress in Aerospace Sciences, 2018, 98:106-123. [28] CAPRIO F D, IGNARRA M, MARULO F, et al. Design of composite stanchions for the cargo subfloor structure of a civil aircraft[J]. Procedia Engineering, 2016, 167:88-96. [29] FEDERAL AVIATION ADMINISTRATION. Metallic materials properties development and standardization (MMPDS):MMPDS-08[S]. Washington, D.C.:Federal Aviation Administration, 2003. |