[1] 胡晓安, 石多奇, 杨晓光, 等. TMF本构和寿命模型:从光棒到涡轮叶片[J].航空学报, 2019, 40(3):422494. HU X A, SHI D Q, YANG X G, et al. TMF constitutive and life modeling:From smooth specimen to turbine blade[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(3):422494(in Chinese). [2] 张丽, 吴学仁, 黄新跃. GH4169合金自然萌生小裂纹扩展行为的试验研究[J].航空学报, 2015, 36(3):840-847. ZHANG L, WU X R, HUANG X Y. Experimental investigation on the growth behavior of naturallyinitiated small cracks in superalloy GH4169[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(3):840-847(in Chinese). [3] 张丽霞, 冯吉才. GH3044镍基合金钎焊接头的界面组织和强度分析[J].材料科学与工艺, 2009, 17(6):770-773. ZHANG L X, FENG J C. Interface structure and strength analysis of brazed GH3044 nickel-based alloy joint[J].Materials Science and Technology, 2009, 17(6):770-773(in Chinese). [4] 马铁军, 杨思乾, 苏瑾, 等. GH4169线性摩擦焊研究[C]//第十一次全国焊接会议论文集. 2005:3. MA T J, YANG S Q, SU J, et al. Research on linear friction welding of GH4169[C]//Proceedings of the 11th National Welding Conference. 2005:3(in Chinese). [5] SMITH M, BICHLER L, GHOLIPOUR J, et al. Mechanical properties and microstructural evolution of in-service Inconel 718 superalloy repaired by linear friction welding[J].The International Journal of Advanced Manufacturing Technology, 2017, 90(5-8):1931-1946. [6] 吴辉, 孙敏, 杨燕. 线性摩擦焊技术研究进展[J].焊接技术, 2014, 7:1-4. WU H, SUN M, YANG Y. Research progress of linear friction welding technology[J].Welding Technology, 2014, 7:1-4(in Chinese). [7] SU Y, LI W Y, WANG X Y, et al. The sensitivity analysis of microstructure and mechanical properties to welding parameters for linear friction welded rail steel joints[J].Materials Science and Engineering:A, 2019, 764:138251. [8] MCANDREW A R, COLEGROVE P A, BVHR C, et al. A literature review of Ti-6Al-4V linear friction welding[J].Progress in Materials Science, 2018, 92:225-257. [9] 吴冰, 李晋炜, 毛智勇, 等. 镍基高温合金电子束焊接接头疲劳性能[J].焊接学报, 2013, 34(8):109-112, 118. WU B, LI J W, MAO Z Y, et al. Fatigue properties of electron beam welded joints of Nickel-base superalloy[J].Transactions of the China Welding Institution, 2013, 34(8):109-112, 118(in Chinese). [10] WU B, MAO Z Y, GUO H D, et al. Fatigue properties of thin superalloys electron beam welded Joint[J].稀有金属材料与工程, 2013, 42(增刊2):226-230. WU B, MAO Z Y, GUO H D, et al. Fatigue properties of thin superalloys electron beam welded JointFull-text in English[J].Rare Metal Materials and Engineering, 2013, 42(Sup 2):226-230(in Chinese). [11] LIU Z, GUO X Y, CUI H C, et al. Role of misorientation in fatigue crack growth behavior for NG-TIG welded joint of Ni-based alloy[J].Materials Science and Engineering:A, 2018, 710:151-163. [12] 赵利利, 邵玲, 顾玉丽, 等. GH625合金氩弧焊焊接接头的疲劳裂纹扩展性能[J].材料热处理学报, 2016, 37(1):180-184. ZHAO L L, SHAO L, GU Y L, et al. Fatigue crack growth of gas tungsten arc weld joint of GH625 alloy[J].Transactions of Materials and Heat Treatment, 2016, 37(1):180-184(in Chinese). [13] 于维成, 袁金才, 柯伟, 等. 铸造镍基高温合金疲劳裂纹的形成与扩展[J].航空学报, 1985, 6(1):75-82. YU W C, YUAN J C, KE W, et al. Fatigue crack initiation and propagation of nickel base superalloy[J].Acta Aeronautica et Astronautica Sinica, 1985, 6(1):75-82(in Chinese). [14] HUNG TRA T, SAKAGUCHI M. High cycle fatigue behavior of the IN718/M247 hybrid element fabricated by friction welding at elevated temperatures[J].Journal of Science:Advanced Materials and Devices, 2016, 1(4):501-506. [15] YANG X W, LI W Y, MA T J. Finite element analysis of the effect of micro-pore defect on linear friction welding of medium carbon steel[J].China Welding, 2014(1):1-5. [16] ZHAO L G, TONG J, HARDY M C. Prediction of crack growth in a nickel-based superalloy under fatigue-oxidation conditions[J].Engineering Fracture Mechanics, 2010, 77(6):925-938. [17] 柴国钟, 吕君, 鲍雨梅, 等. 表面裂纹疲劳扩展和寿命计算的高效高精度数值分析方法[J].航空学报, 2017, 38(12):221291. CHAI G Z, LYU J, BAO Y M, et al. A highly efficient and accurate numerical analysis method for fatigue propagation of surface crack and life prediction[J].Acta Aeronautica et Astronautica Sinica, 2017, 38(12):221291(in Chinese). [18] 张彦华, 贾安东, 王立君. 疲劳裂纹扩展随机模型[J].航空学报, 1994,15(7):806-811. ZHANG Y H, JIA A D, WANG L J. Stochastic model for fatigue crack growth[J].Acta Aeronautica et Astronautica Sinica, 1994,15(7):806-811(in Chinese). [19] 顾志旭, 郑坚, 彭威, 等. HTPB黏弹性微裂纹偏折扩展损伤本构模型[J].航空学报, 2018, 39(9):222059. GU Z X, ZHENG J, PENG W, et al. A viscoelastic damage constitutive model for HTPB with kinked growth of microcracks[J].Acta Aeronautica et Astronautica Sinica, 2018, 39(9):222059(in Chinese). [20] 朱文博. 工程陶瓷旋转超声钻削效率的有限元分析[D]. 哈尔滨:哈尔滨工业大学, 2007. ZHU W B. FEA of efficiency in rotary ultrasonic drilling of engineering ceramics[D]. Harbin:Harbin Institute of Technology, 2007(in Chinese). [21] SMITH R A, COOPER J F. A finite element model for the shape development of irregular planar cracks[J].International Journal of Pressure Vessels and Piping, 1989, 36(4):315-326. [22] SUMI Y, YANG C, HAYASHI S. Morphological aspects of fatigue crack propagation Part I-Computational procedure[J].International Journal of Fracture, 1996, 82(3):205-220. [23] BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimal remeshing[J].International Journal for Numerical Methods in Engineering, 1999, 45(5):601-620. [24] 赵丽滨, 龚愉, 张建宇. 纤维增强复合材料层合板分层扩展行为研究进展[J].航空学报, 2019, 40(1):522509. ZHAO L B, GONG Y, ZHANG J Y. A survey on delamination growth behavior in fiber reinforced composite laminates[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522509(in Chinese). [25] 郭建亭. 高温合金材料学[M]. 北京:科学出版社, 2008. GUO J T. High temperature alloy material science[M]. Beijing:Science Press,2018(in Chinese). [26] 李其棒. 航空发动机涡轮盘用GH4133B合金疲劳裂纹扩展数值模拟研究[D]. 湘潭:湘潭大学, 2016:17-19. LI Q B. Aeroengine turbine disk GH4133B alloy fatigue crack propagation numerical simulation study[D]. Xiangtan:Xiangtan University, 2016:17-19(in Chinese). [27] SCHÖLLMANN M, RICHARD H A, KULLMER G, et al. A new criterion for the prediction of crack development in multiaxially loaded structures[J].International Journal of Fracture, 2002, 117(2):129-141. [28] 谷雨. 基于XFEM的梁柱节点断裂分析及裂纹扩展研究[D]. 兰州:兰州理工大学, 2016:26-27. GU Y. Fracture analysis and crack propagation research of beam-column joints based on XFEM[D]. Lanzhou:Lanzhou University of Technology, 2016:26-27(in Chinese). [29] 王振. 基于扩展有限元法的连续管裂纹扩展研究[D].荆州:长江大学,2019:20. WANG Z. Crack propagation of coiled tubing based on extended finite element method[D]. Jingzhou:Yangtze University,2019:20(in Chinese). [30] 师昌绪, 李恒德, 周廉. 材料科学与工程手册(上卷)[M]. 北京:化学工业出版社,2004:349-351. SHI C X, LI H D, ZHOU L. Materials science and engineering handbook (Volume 1)[M].Beijing:Chemical Industry Press, 2004:349-351(in Chinese). |