ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2022, Vol. 43 ›› Issue (6): 525323-525323.doi: 10.7527/S1000-6893.2021.25323
• Reviews • Previous Articles Next Articles
CAO Yong1,2, ZHANG Chao3,4,5
Received:
2021-01-26
Revised:
2021-05-20
Online:
2022-06-15
Published:
2021-05-20
Supported by:
CLC Number:
CAO Yong, ZHANG Chao. Impact damage behavior of thin-ply composites: A review[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(6): 525323-525323.
[1] GALOS J. Thin-ply composite laminates:A review[J]. Composite Structures, 2020, 236:111920. [2] 邓健, 卢天健, 尹乔之. 复合材料MMB试件I-II混合型层间裂纹扩展分析[J]. 航空学报, 2021, 42(2):224241. DENG J, LU T J, YIN Q Z. Analysis on I-II mixed interlaminar crack propagation of composite MMB specimens[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2):224241(in Chinese). [3] BORG C. An introduction to spread tow reinforcements:Part 1-Manufacture and properties[J]. Reinforced Plastics, 2015, 59(4):194-198. [4] DROŹDZIEL M, JAKUBCZAK P, BIENIAŚ J. Low-velocity impact resistance of thin-ply in comparison with conventional aluminium-carbon laminates[J]. Composite Structures, 2021, 256:113083. [5] TONY G. Mars helicopter attached to NASA's perseverance rover[EB/OL]. (2020-04-11)[2020-12-22]. https://www.nasa.gov/feature/jpl/mars-helicopter-attached-to-nasas-perseverance-rover. [6] Oxeon A B. BlackWing aircraft reinforced by TeXtreme® wins Red Dot design award[EB/OL]. (2016-12-22)[2020-12-19]. https://www.textreme.com/blackwing-aircraft-reinforced-by-textreme-wins-red-dot-design-award/. [7] CUGNONI J, AMACHER R, KOHLER S, et al. Towards aerospace grade thin-ply composites:Effect of ply thickness, fibre, matrix and interlayer toughening on strength and damage tolerance[J]. Composites Science and Technology, 2018, 168:467-477. [8] CATALANOTTI G. Prediction of in situ strengths in composites:Some considerations[J]. Composite Structures, 2019, 207:889-893. [9] FOTOUHI M, FULLER J, LONGANA M, et al. The high strain rate tension behaviour of pseudo-ductile high performance thin ply composites[J]. Composite Structures, 2019, 215:365-376. [10] SASIKUMAR A, TRIAS D, COSTA J, et al. Impact and compression after impact response in thin laminates of spread-tow woven and non-crimp fabrics[J]. Composite Structures, 2019, 215:432-445. [11] YUAN Y N, WANG S, YANG H, et al. Analysis of pseudo-ductility in thin-ply carbon fiber angle-ply laminates[J]. Composite Structures, 2017, 180:876-882. [12] 罗云烽, 孙永春, 段跃新, 等. 大丝束碳纤维薄层化技术[J]. 复合材料学报, 2010, 27(1):123-128. LUO Y F, SUN Y C, DUAN Y X, et al. A technology used in spreading large tow carbon fibers[J]. Acta Materiae Compositae Sinica, 2010, 27(1):123-128(in Chinese). [13] 刘宇峰, 李同起, 冯志海, 等. 薄层化碳布缝合碳/碳复合材料制备与性能[J]. 复合材料学报, 2021, 38(4):1210-1222. LIU Y F, LI T Q, FENG Z H, et al. Preparation and properties of spreading carbon cloth stitched C/C composites[J]. Acta Materiae Compositae Sinica, 2021, 38(4):1210-1222(in Chinese). [14] 李蓓蓓. 展纱及展纱织物复合材料结构及性能的研究[D]. 上海:东华大学, 2015:1-8. LI B B. Research on the structures and properties of spread tow and spread tow fabric composites[D]. Shanghai:Donghua University, 2015:1-8(in Chinese). [15] 贺雍律, 张鉴炜, 黄春芳, 等. CFRP层合板抗分层损伤技术研究进展[J]. 材料导报, 2018, 32(7):2288-2294. HE Y L, ZHANG J W, HUANG C F, et al. Progress of anti-delamination techniques for laminated composites[J]. Materials Review, 2018, 32(7):2288-2294(in Chinese).. [16] ARTEIRO A, CATALANOTTI G, MELRO A R, et al. Micro-mechanical analysis of the effect of ply thickness on the transverse compressive strength of polymer composites[J]. Composites Part A:Applied Science and Manufacturing, 2015, 79:127-137. [17] ARTEIRO A, FURTADO C, CATALANOTTI G, et al. Thin-ply polymer composite materials:A review[J]. Composites Part A:Applied Science and Manufacturing, 2020, 132:105777. [18] 李红周, 丁江平, 范欣愉. 跨尺度预测非屈曲织物增强复合材料的刚度和强度[J]. 复合材料学报, 2012, 29(6):170-178. LI H Z, DING J P, FAN X Y. Prediction of stiffness and strength of non-crimp fabric reinforced composites at multiscales[J]. Acta Materiae Compositae Sinica, 2012, 29(6):170-178(in Chinese). [19] 丁江平, 潘利剑, 范欣愉, 等. 国产CCF300碳纤维4轴向无屈曲织物层合板力学性能对比研究[J]. 高科技纤维与应用, 2010, 35(5):26-31. DING J P, PAN L J, FAN X Y, et al. Study on the mechanical properties of domestic CCF300 carbon fiber four axial directions non-crimp fabric laminates[J]. Hi-Tech Fiber & Application, 2010, 35(5):26-31(in Chinese). [20] 曹勇. 多轴向经编复合材料等效力学性能预测方法研究[D]. 西安:西北工业大学, 2017:17-20. CAO Y. Research on the prediction method of equivalent mechanical properties of non-crimp fabric composites[D]. Xi'an:Northwestern Polytechnical University, 2017:17-20(in Chinese). [21] CIMCOMP. Design simulation tools and process improvements for NCF preforming[EB/OL]. (2020-07-05)[2020-12-22]. https://cimcomp.ac.uk/research/design-simulation-tools-and-process-improvements-for-ncf-prefor-ming. [22] SIHN S, KIM R Y, KAWABE K, et al. Experimental studies of thin-ply laminated composites[J]. Composites Science and Technology, 2007, 67(6):996-1008. [23] YOKOZEKI T, AOKI Y, OGASAWARA T. Experimental characterization of strength and damage resistance properties of thin-ply carbon fiber/toughened epoxy laminates[J]. Composite Structures, 2008, 82(3):382-389. [24] YOKOZEKI T, KURODA A, YOSHIMURA A, et al. Damage characterization in thin-ply composite laminates under out-of-plane transverse loadings[J]. Composite Structures, 2010, 93(1):49-57. [25] AMACHER R, CUGNONI J, BOTSIS J, et al. Thin ply composites:Experimental characterization and modeling of size-effects[J]. Composites Science and Technology, 2014, 101:121-132. [26] SAITO H, MORITA M, KAWABE K, et al. Effect of ply-thickness on impact damage morphology in CFRP laminates[J]. Journal of Reinforced Plastics and Composites, 2011, 30(13):1097-1106. [27] MENCATTELLI L, PINHO S T. Realising bio-inspired impact damage-tolerant thin-ply CFRP Bouligand structures via promoting diffused sub-critical helicoidal damage[J]. Composites Science and Technology, 2019, 182:107684. [28] ABIR M R, TAY T E, LEE H P. On the improved ballistic performance of bio-inspired composites[J]. Composites Part A:Applied Science and Manufacturing, 2019, 123:59-70. [29] LIU J L, LEE H P, KONG S H R, et al. Improving laminates through non-uniform inter-ply angles[J]. Composites Part A:Applied Science and Manufacturing, 2019, 127:105625. [30] MENCATTELLI L, PINHO S T. Ultra-thin-ply CFRP Bouligand bio-inspired structures with enhanced load-bearing capacity, delayed catastrophic failure and high energy dissipation capability[J]. Composites Part A:Applied Science and Manufacturing, 2020, 129:105655. [31] LIU J L, SINGH A K, LEE H P, et al. The response of bio-inspired helicoidal laminates to small projectile impact[J]. International Journal of Impact Engineering, 2020, 142:103608. [32] GARCÍA-RODRÍGUEZ S M, COSTA J, BARDERA A, et al. A 3D tomographic investigation to elucidate the low-velocity impact resistance, tolerance and damage sequence of thin non-crimp fabric laminates:effect of ply-thickness[J]. Composites Part A:Applied Science and Manufacturing, 2018, 113:53-65. [33] GARCÍA-RODRÍGUEZ S M, COSTA J, SINGERY V, et al. The effect interleaving has on thin-ply non-crimp fabric laminate impact response:X-ray tomography investigation[J]. Composites Part A:Applied Science and Manufacturing, 2018, 107:409-420. [34] WAGIH A, MAIMÍ P, BLANCO N, et al. Improving damage resistance and load capacity of thin-ply laminates using ply clustering and small mismatch angles[J]. Composites Part A:Applied Science and Manufacturing, 2019, 117:76-91. [35] TOYOTA K, OKUBO K, FUJII T, et al. Mechanical properties of plain-woven CFRP reinforced by spread fiber tow during and after drop-weight impact[J]. WIT Transactions on the Built Environment, 2006, 87:SU060441. [36] SEBAEY T A, MAHDI E. Using thin-plies to improve the damage resistance and tolerance of aeronautical CFRP composites[J]. Composites Part A:Applied Science and Manufacturing, 2016, 86:31-38. [37] WAGIH A, MAIMÍ P, GONZÍLEZ E V, et al. Damage sequence in thin-ply composite laminates under out-of-plane loading[J]. Composites Part A:Applied Science and Manufacturing, 2016, 87:66-77. [38] MINAK G, FOTOUHI M, AHMADI M. Low-velocity impact on laminates[M]//Dynamic Deformation, Damage and Fracture in Composite Materials and Structures. Amsterdam:Elsevier, 2016:147-165. [39] NIU M C. Composite airframe structures[M]. Hong Kong:Conmilit Press Ltd., 1992:89-91. [40] SUKSANGPANYA N, YARAGHI N A, KISAILUS D, et al. Twisting cracks in Bouligand structures[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 76:38-57. [41] 刘璐璐, 宣海军, 张娜. 航空发动机复合材料机匣叶片包容性研究[J]. 工程力学, 2013, 30(增刊):314-319. LIU L L, XUAN H J, ZHANG N. Investigation on blade containment of aero-engine composite case[J]. Engineering Mechanics, 2013, 30(Sup.):314-319(in Chinese). [42] MA D Y, MANES A, AMICO S C, et al. Ballistic strain-rate-dependent material modelling of glass-fibre woven composite based on the prediction of a meso-heterogeneous approach[J]. Composite Structures, 2019, 216:187-200. [43] 周旭. 导弹毁伤效能试验与评估[M]. 北京:国防工业出版社, 2014:5-26. ZHOU X. Missile damage effectiveness test and evaluation[M]. Beijing:National Defense Industry Press, 2014:5-26(in Chinese). [44] 李玉龙, 刘会芳. 加载速率对层间断裂韧性的影响[J]. 航空学报, 2015, 36(8):2620-2650. LI Y L, LIU H F. Loading rate effect on interlaminar fracture toughness[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2620-2650(in Chinese). [45] FURTADO C, ARTEIRO A, LINDE P, et al. Is there a ply thickness effect on the mode I intralaminar fracture toughness of composite laminates?[J]. Theoretical and Applied Fracture Mechanics, 2020, 107:102473. [46] FROSSARD G, CUGNONI J, GMVR T, et al. Mode I interlaminar fracture of carbon epoxy laminates:Effects of ply thickness[J]. Composites Part A:Applied Science and Manufacturing, 2016, 91:1-8. [47] FROSSARD G, CUGNONI J, GMVR T, et al. An efficient method for fiber bridging traction identification based on the R-curve:Formulation and experimental validation[J]. Composite Structures, 2017, 175:135-144. [48] HUANG C F, HE M C, HE Y L, et al. Exploration relation between interlaminar shear properties of thin-ply laminates under short-beam bending and meso-structures[J]. Journal of Composite Materials, 2018, 52(17):2375-2386. [49] BLAKE S P, BERUBE K A, LOPEZ-ANIDO R A. Interlaminar fracture toughness of woven E-glass fabric composites[J]. Journal of Composite Materials, 2012, 46(13):1583-1592. [50] XU W, WAAS A M. Fracture toughness of woven textile composites[J]. Engineering Fracture Mechanics, 2017, 169:184-188. [51] TRIKI E, ZOUARI B, DAMMAK F. Dependence of the interlaminar fracture toughness of E-Glass/polyester woven fabric composites laminates on ply orientation[J]. Engineering Fracture Mechanics, 2016, 159:63-78. [52] ZHAO Y, CAO M, LUM W P, et al. Interlaminar fracture toughness of hybrid woven carbon-Dyneema composites[J]. Composites Part A:Applied Science and Manufacturing, 2018, 114:377-387. [53] YOU H E, YUM Y J. Loading rate effect on mode I interlaminar fracture of carbon/epoxy composite[J]. Journal of Reinforced Plastics and Composites, 1997, 16(6):537-549. [54] SUN C T, HAN C. A method for testing interlaminar dynamic fracture toughness of polymeric composites[J]. Composites Part B:Engineering, 2004, 35(6-8):647-655. [55] LIU H F, NIE H L, ZHANG C, et al. Loading rate dependency of mode I interlaminar fracture toughness for unidirectional composite laminates[J]. Composites Science and Technology, 2018, 167:215-223. [56] SMILEY A J, PIPES R B. Rate effects on mode I interlaminar fracture toughness in composite materials[J]. Journal of Composite Materials, 1987, 21(7):670-687. [57] OLSSON R. Analytical prediction of damage due to large mass impact on thin ply composites[J]. Composites Part A:Applied Science and Manufacturing, 2015, 72:184-191. [58] SOTO A, GONZÁLEZ E V, MAIMÍ P, et al. Low velocity impact and compression after impact simulation of thin ply laminates[J]. Composites Part A:Applied Science and Manufacturing, 2018, 109:413-427. [59] Carl T. H. Mechanics of composites:A historical review[J]. Mechanics Research Communications, 2012, 41:1-20. [60] REDDY J N. Mechanics of laminated composite plates and shells[M]. Boca Raton:CRC Press, 2003:109-110. [61] CHEN P H, XIONG J J, SHEN Z. Thickness effect on the contact behavior of a composite laminate indented by a rigid sphere[J]. Mechanics of Materials, 2008, 40(4-5):183-194. [62] OLSSON R. Analytical prediction of large mass impact damage in composite laminates[J]. Composites Part A:Applied Science and Manufacturing, 2001, 32(9):1207-1215. [63] FAGIANO C, ABDALLA M M, KASSAPOGLOU C, et al. Interlaminar stress recovery for three-dimensional finite elements[J]. Composites Science and Technology, 2010, 70(3):530-538. [64] 古兴瑾. 复合材料层板高速冲击损伤研究[D]. 南京:南京航空航天大学, 2011:5-6. GU X J. Research on high velocity impact damage of composite laminates[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2011:5-6(in Chinese). [65] SHOKRIEH M M, MOSALMANI R, OMIDI M J. Strain-rate dependent micromechanical method to investigate the strength properties of glass/epoxy composites[J]. Composite Structures, 2014, 111:232-239. [66] GUILLÉN-HERNÁNDEZ T, QUINTANA-COROMINAS A, GARCÍA I G, et al. In-situ strength effects in long fibre reinforced composites:A micro-mechanical analysis using the phase field approach of fracture[J]. Theoretical and Applied Fracture Mechanics, 2020, 108:102621. [67] CHEN J Y, WAN L, ISMAIL Y, et al. A micromechanics and machine learning coupled approach for failure prediction of unidirectional CFRP composites under triaxial loading:A preliminary study[J]. Composite Structures, 2021, 267:113876. [68] ASTM International. Standard guide for testing fabric-reinforced "textile" composite materials:D6856/D6856M-03[S]. West Conshohocken:ASTM International, 2016:1-8. [69] TRUONG T C, IVANOV D S, KLIMSHIN D V, et al. Carbon composites based on multi-axial multi-ply stitched preforms. Part 7:Mechanical properties and damage observations in composites with sheared reinforcement[J]. Composites Part A:Applied Science and Manufacturing, 2008, 39(9):1380-1393. [70] ISHIKAWA T, CHOU T W. Stiffness and strength behaviour of woven fabric composites[J]. Journal of Materials Science, 1982, 17(11):3211-3220. [71] 易洪雷, 丁辛. 三维机织复合材料的弹性性能预报模型[J]. 力学学报, 2003, 35(5):569-577. YI H L, DING X. A model to predict elastic properties of 3D woven composites[J]. Acta Mechanica Sinica, 2003, 35(5):569-577(in Chinese). [72] WANG L, WU J Y, CHEN C Y, et al. Progressive failure analysis of 2D woven composites at the meso-micro scale[J]. Composite Structures, 2017, 178:395-405. [73] 曹勇, 蔡应龙, 张超. 基于Mosaic-亚单胞模型的展宽机织复合材料损伤模拟方法[C]//第四届中国国际复合材料科技大会. 北京:复合材料学会, 2019:276-277. CAO Y, CAI Y L, ZHANG C. A Mosaic-Subcell model for damage simulation of spread-tow woven composites[C]//The 4th China International Congress on Composite Materials. Beijing:Chinese Society of Composite Materials, 2019:276-277(in Chinese). [74] 李京菁. 平纹机织复合材料力学性能研究及单元化计算[D]. 西安:西北工业大学, 2015:14-22. LI J J. Mechanical analysis and unitized calculation of the woven composite material[D]. Xi'an:Northwestern Polytechnical University, 2015:14-22(in Chinese). [75] 张洁皓, 段玥晨, 侯玉亮, 等. 基于渐进均匀化的平纹编织复合材料低速冲击多尺度方法[J]. 力学学报, 2019, 51(5):1411-1423. ZHANG J H, DUAN Y C, HOU Y L, et al. Multi-scale method of plain woven composites subjected to low velocity impact based on asymptotic homogenization[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5):1411-1423(in Chinese). [76] CAO Y, CAI Y L, ZHAO Z Q, et al. Predicting the tensile and compressive failure behavior of angle-ply spread tow woven composites[J]. Composite Structures, 2020, 234:111701. [77] DANG H Y, ZHAO Z Q, LIU P, et al. A new analytical method for progressive failure analysis of two-dimensional triaxially braided composites[J]. Composites Science and Technology, 2020, 186:107936. |
[1] | Liping LIU, Yuyang QI, Yueguo LIN, Rui BAO, Jianxin XU, Zhenyu FENG, Guanghui QING. Tensile failure of carbon fiber composite material bonded-rivet hybrid repaired structure [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(24): 428676-428676. |
[2] | Junchao YANG, Xueming WANG, Xiangming CHEN, Peng ZOU, Zhe WANG. Effect of low-velocity impact damage on compressive properties of composite stiffened panels [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(20): 228498-228498. |
[3] | Wei ZHANG, Binwen WANG, Junling FAN, Shaozheng ZHAN, Ting JIAO, Yu YANG. Ultrasonic nondestructive characterization of impact damage and compression after impact for CFRP based on multi-mode imaging [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(1): 426635-426635. |
[4] | YU Yuxi, ZHANG Weibin, SUN Yi, CONG Minghui, ZHU Jian, SONG Jingyuan. Simulation analysis of deformation behavior and resilience of Ni-based alloy canted coil spring for dynamic seal [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(7): 425527-425527. |
[5] | CAO Yi, MENG Gang, JU Yongjian, XU Weisheng. Large-stroke compliant micro-positioning stage considering parasitic rotation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(7): 425498-425498. |
[6] | WAN Aoshuang. Probabilistic assessment on damage tolerance of composite helicopter horizontal tail structure [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(6): 525557-525557. |
[7] | YU Chengyue, LIU Bo, LI Chuanzheng, XUE Chuang. Analytical research on connecting structure of composite material satellite bearing cylinder [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(3): 225161-225161. |
[8] | YANG Xiawei, PENG Chong, MA Tiejun, WEN Guodong, WANG Yanying, CHAI Xiaoxia, XU Yaxin, LI Wenya. Finite element analysis of fatigue crack growth of linear friction welded superalloy joints [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(2): 625004-625004. |
[9] | PENG Jinfeng, WU Dongrun, CUI Weiyun, CAI Deng'an, ZHOU Guangming. Design and analysis of simulated ice with 3D printed sandwich composite material [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(9): 224536-224536. |
[10] | LI Yuhai, WANG Chengbo, CHEN Liang, DONG Hongda, GUAN Yu, DI Hongliang, GU Yuxuan. Overview on development of advanced fighter life design and extension technology [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(8): 525791-525791. |
[11] | LUO Chuyang, JIANG Shengda, CHEN Mengxiong, ZHANG Peng, XIA Xufeng, CAI Peipei. Preparation and evaluation of carbon fiber/polyimide composite attaching collars based on high temperature resin transfer mould process [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(7): 625438-625438. |
[12] | WANG Binwen, CHEN Xianmin, SU Yunlai, SUN Hanbin, YANG Yu, FAN Junling. Research progress and prospect of fatigue and structural integrity for aeronautical industry in China [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(5): 524651-524651. |
[13] | ZHANG Fuze. Principle and method of calculating real corrosion tolerance value of aircraft struture [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(5): 524457-524457. |
[14] | ZHANG Jikui, KONG Xiangyi, MA Shaojun, LIU Dong, WANG Xinbo, FENG Jun, WANG Huaming. Laser additive manufactured high strength-toughness TC11 titanium alloy: Mechanical properties and application in airframe load-bearing structure [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(10): 525430-525430. |
[15] | LI Zhen, WANG Jun, DENG Fanchen, YU Zhenbo. Strength analysis and test verification of composite fuselage panels [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(9): 223688-223688. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341