Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (3): 228786-228786.doi: 10.7527/S1000-6893.2023.28786
• Solid Mechanics and Vehicle Conceptual Design • Previous Articles Next Articles
Haolei MOU1, Weiwei XIE2, Jiang XIE1, Zhenyu FENG1(), Lanhui LIN2
Received:
2023-03-31
Revised:
2023-04-28
Accepted:
2023-06-06
Online:
2024-02-15
Published:
2023-06-09
Contact:
Zhenyu FENG
E-mail:caucstructure@163.com
Supported by:
CLC Number:
Haolei MOU, Weiwei XIE, Jiang XIE, Zhenyu FENG, Lanhui LIN. Occupant injury analysis and aircraft crashworthiness evaluation under crash scenarios[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 228786-228786.
Table 4
Fastener property parameters[23]
牌号 | 材料 | 密度ρ/(10-6 kg·mm-3) | 弹性模量E/GPa | 泊松比μ | 屈服应力σy/MPa | 极限拉伸载荷 Nu/N | 极限剪切载荷 Tu/N |
---|---|---|---|---|---|---|---|
MS20470AD5-6 | 7050-T73 | 2.82 | 72.4 | 0.33 | 441.3 | 5 093 | 3 738 |
NAS1097KE5-6 | 7050-T73 | 2.82 | 72.4 | 0.33 | 441.3 | 3 665 | 5 051 |
MS20470E5-6 | 2017-T4 | 2.70 | 72.4 | 0.33 | 379.2 | 6 300 | 4 389 |
NAS1465-03 | 合金钢 | 7.80 | 210.0 | 0.33 | 500.0 | 7 702 | 9 359 |
CFBL1001AG5-2 | 钛合金 | 4.50 | 117.0 | 0.33 | |||
CFBL1002AG5-2 | 钛合金 | 4.50 | 117.0 | 0.33 | |||
CFBL1003AG5-2 | 钛合金 | 4.50 | 117.0 | 0.33 |
Table 5
Aircraft crashworthiness evaluation indicators
考核指标 | 考核项 | 试验结果 | 评估准则 | 备注 |
---|---|---|---|---|
可生存空间 | 客舱变形 | 客舱宽度与高度未发生较大变形 | ≤15% | 满足 |
座椅导轨、地板梁 | 客舱地板横梁未发生明显变形 | 结构主体较完整 | 满足 | |
系留强度 | 座椅连接 | 座椅椅腿与地板导轨处 的连接均保持完好 | 可以发生塑性变形,必须始终连接在座椅导轨上 | 满足 |
头顶行李舱 | 未考虑 | 行李舱不能脱落,伤害乘员或影响撤离通道 | 未考虑 | |
乘员损伤 | HIC | 头部HIC最大值为31.47 | HIC≤1 000 | 满足 |
腰椎载荷 | 腰椎载荷最大值为3 997.2 N | 最大压缩载荷≤6 672 N | 满足 | |
安全带载荷 | 未考虑 | 单系带拉伸载荷≤7 784 N | 未考虑 | |
股骨载荷 | 未考虑 | 轴向压缩载荷≤10 008 N | 未考虑 | |
应急撤离 | 座椅强度 | 座椅结构未发生大变形 | 座椅变形不能困住乘员 | 满足 |
过道宽度 | 座椅结构未发生大变形, 未侵入过道,过道通畅 | 距地板635 mm以上,过道宽度≥510 mm, 过道通畅 | 满足 | |
应急舱门 | 未考虑 | 结构变形不能妨碍应急舱门打开 | 未考虑 |
1 | GUIDA M, MARULO F, ABRATE S. Advances in crash dynamics for aircraft safety[J]. Progress in Aerospace Sciences, 2018, 98: 106-123. |
2 | 解江, 牟浩蕾, 冯振宇. 运输类飞机适坠性合格审定导论[M]. 北京:中国民航出版社, 2022: 1-102. |
XIE J, MOU H L, FENG Z Y. Introduction to crashworthiness certification of transport aircraft[M]. Beijing: China Civil Aviation Press, 2022:1-102 (in Chinese). | |
3 | 牟浩蕾, 解江, 冯振宇. 民机机身结构适坠性研究[J]. 交通运输工程学报, 2020, 20(3): 17-39. |
MOU H L, XIE J, FENG Z Y. Research on crashworthiness of civil aircraft fuselage structures[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 17-39 (in Chinese). | |
4 | WILLIAMS M S, HAYDUK R J. Vertical drop test of a transport fuselage section located forward of the wing: 19840002543 [R]. Washington,D.C.: NASA Technical Memorandum, 1983. |
5 | WILLIAMS M S, HAYDUK R J. Vertical drop test of a transport fuselage center section including the wheel wells: NASA TM-85706[R]. Washington,D.C.: NASA Technical Memorandum, 1983. |
6 | ABRAMOWITZ A, SMITH T G, VU T. Vertical drop test of a narrow-body transport fuselage section with a conformable auxiliary fuel tank onboard: 0148-7191 [R]. Washington,D.C.: FAA, 2000. |
7 | JACKSON K E, FASANELLA E L. Crash simulation of vertical drop tests of two Boeing 737 fuselage sections: DOT/FAA/AR-02/62[R]. Washington,D.C.: FAA, 2002. |
8 | MOSTAFA R. Virtual test & simulation [C]∥Los Angeles, Engineering, Operations & Technology, AIAA Complex Aerospace Systems Exchange.Reston:AIAA,2013. |
9 | JACKSON K E, LITTELL J D, Annett M S, et al. Finite element simulations of two vertical drop tests of F-28 fuselage sections: NASA/TM-2018-219807 [R]. Washington,D.C.: NASA, 2018., |
10 | LITTELL J D. A summary of results from two full-scale fokker F28 fuselage section drop tests: 20180004391 [R]. Washington,D.C.: NASA Langley Research Center, 2018. |
11 | Federal Aviation Administration. Transport airplane cabin interiors crashworthiness handbook:AC 25-17A [S]. Washington D C: FAA, 2009. |
12 | Federal Aviation Administration. Injury criteria for human exposure to impact: AC 21-22 [S]. Washington,D.C.: FAA, 1985. |
13 | LE PAGE F, CARCIENTA R. A320 fuselage section vertical drop test, Part 2: Test result: S955776/2[R]. Toulouse: CEAT, 1995. |
14 | GRANSDEN D I, ALDERLIESTEN R. Development of a finite element model for comparing metal and composite fuselage section drop testing[J]. International Journal of Crashworthiness, 2017, 22(4): 401-414. |
15 | CLIMENT H, AERONÁUTICAS C. Non-linear response of metallic and composite aeronautical fuselage structures under crash loads and comparison with full scale test[C]∥European Congress on Computational Methods in Applied Sciences and Engineering. Athens:National Technical University of Athens, 2000: 11-14. |
16 | KUMAKURA I, MINEGISHI M, IWASAKI K, et al. Vertical drop test of a transport fuselage section[C]∥SAE Technical Paper Series. Warrendale States: SAE International, 2002: 01-2997. |
17 | KUMAKURA I, MINEGISHI M, IWASAKI K, et al. Summary of vertical drop tests of YS-11 transport fuselage sections[C]∥ SAE Technical Paper Series. Warrendale: SAE International, 2003: 531-540. |
18 | 刘小川, 郭军, 孙侠生, 等. 民机机身段和舱内设施坠撞试验及结构适坠性评估[J]. 航空学报, 2013, 34(9): 2130-2140. |
LIU X C, GUO J, SUN X S, et al. Drop test and structure crashworthiness evaluation of civil airplane fuselage section with cabin interiors[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2130-2140 (in Chinese). | |
19 | 张欣玥, 惠旭龙, 刘小川, 等. 典型金属民机机身结构坠撞特性试验[J]. 航空学报, 2022, 43(6): 526234. |
ZHANG X Y, XI X L, LIU X C, et al. Experimental study on crash characteristics of typical metal civil aircraft fuselage structure[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 526234 (in Chinese). | |
20 | 任毅如, 向锦武, 罗漳平, 等. 客舱地板斜撑杆对民机典型机身段耐撞性能的影响[J]. 航空学报, 2010, 31(2): 271-276. |
REN Y R, XIANG J W, LUO Z P, et al. Effect of cabin-floor oblique strut on crashworthiness of typical civil aircraft fuselage section[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(2): 271-276 (in Chinese). | |
21 | 朱鲜飞, 冯蕴雯, 薛小锋, 等. 基于乘员响应的民机典型机身段结构适坠性分析与评估[J]. 机械强度, 2020, 42(3): 617-630. |
ZHU X F, FENG Y W, XUE X F, et al. Analysis and evaluation fuselage section’s crashworthiness of typical civil airplane based on passenger response[J]. Journal of Mechanical Strength, 2020, 42(3): 617-630 (in Chinese). | |
22 | 牟浩蕾, 解江, 冯振宇, 等. 大型运输类飞机典型机身框段坠撞特性分析[J]. 航空学报, 2023, 44(9): 232-246. |
MOU H L, XIE J, FENG Z Y, et al. Crashworthiness characteristics analysis of typical fuselage section of large transport aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(9): 232-246 (in Chinese). | |
23 | 解江, 牟浩蕾, 冯振宇, 等. 大飞机典型货舱下部结构冲击试验及数值模拟[J]. 航空学报, 2022, 43(6): 525890. |
XIE J, MOU H L, FENG Z Y, et al. Impact characteristics of typical sub-cargo structure of large aircraft: tests and numerical simulation[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 525890 (in Chinese). | |
24 | Transport Aircraft Crashworthiness and Ditching Working Group. Transport Aircraft Crashworthiness and Ditching Working Group Report to FAA[R]. Washington, D.C.: FAA, 2018. |
25 | LANKARANI H M. Current issues regarding aircraft crash injury protection[M]∥Crashworthiness of Transportation Systems: Structural Impact and Occupant Protection. Dordrecht: Springer Netherlands, 1997: 579-612. |
26 | Federal Aviation Administration. Emergency landing dynamic conditions: FAR25.562 [S]. Washington,D.C.: Federal Aviation Administration, 1988. |
27 | Federal Aviation Administration. Technical standard order-rotorcraft, transport airplane, and small airplane seating systems: TSO-C127b [S]. Washington,D.C.: Federal Aviation Administration, 2014. |
28 | 中国民用航空局. 中国民用航空规章: 第25部-运输类飞机适航标准:CCAR-25 [S]. 北京: 中国民用航空局, 2011. |
Civil Aviation Administration of China. China civil aviation regulation:25-airworthiness standard of transport aircraft: CCAR-25 [S]. Beijing: Civil Administration of China, 2011 (in Chinese). | |
29 | EIBAND A. Human tolerance to rapidly applied accelerations: A summary of the literature: NASA Memorandum 5-19-59E[R]. Cleveland: NASA Lewis Research Center, 1959. |
30 | STECH E, PAYNE P. Dynamic models of the human body: AMRL-TR-66-l57[R]. Dayton: Aerospace Medical Research Laboratory, Wright-Patterson AFB, 1969. |
31 | CHANDLER R. Human injury criteria relative to civil aircraft seat and restraint systems: SAE Paper 851847[R]. Warrendale: SAE International, 1985. |
32 | BRINKLEY J, SHAFFER J. Dynamic simulation techniques for the design of escape systems: current applications and future Air Force requirements: AMRL-TR-71-29[R]. State of Ohio: USAF Aerospace Research Laboratories, 197l. |
[1] | Haolei MOU, Jiang XIE, Zhenyu FENG, Kun CHENG, Yi LIU. Crashworthiness characteristics analysis of typical fuselage section of large transport aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 227512-227512. |
[2] | Xiaochuan LIU, Xinyue ZHANG, Xulong XI, Yabin YAN, Juntai MA. Influence of structural repairs on crashworthiness of civil aircraft fuselage [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 227517-227517. |
[3] | FENG Zhenyu, CHENG Kun, ZHAO Yifan, LI Henghui, XIE Jiang, MOU Haolei, WANG Yafeng, Ge Yujing. Energy-absorbing characteristics of a typical sub-cargo fuselage section of a transport category aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(9): 222907-222907. |
[4] | LIU Xiaochuan, GUO Jun, SUN Xiasheng, MU Rangke. Drop Test and Structure Crashworthiness Evaluation of Civil Airplane Fuselage Section with Cabin Interiors [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013, 34(9): 2130-2140. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341