ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2023, Vol. 44 ›› Issue (9): 227512-227512.doi: 10.7527/S1000-6893.2022.27512
• Solid Mechanics and Vehicle Conceptual Design • Previous Articles Next Articles
Haolei MOU1, Jiang XIE2, Zhenyu FENG1(), Kun CHENG1, Yi LIU1
Received:
2022-05-24
Revised:
2022-07-14
Accepted:
2022-11-07
Online:
2023-05-15
Published:
2022-12-06
Contact:
Zhenyu FENG
E-mail:mhfzy@163.com
Supported by:
CLC Number:
Haolei MOU, Jiang XIE, Zhenyu FENG, Kun CHENG, Yi LIU. Crashworthiness characteristics analysis of typical fuselage section of large transport aircraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 227512-227512.
Table 1
Crash tests of fuselage section
序号 | 国家或地区 | 试验对象 | 试验年份 | 撞击速度/ (m·s-1) | 撞击面 |
---|---|---|---|---|---|
1 | 美国 | 707机身框段 | 1980 | 6.10 | 刚硬地面 |
2 | 美国 | 707机身框段(含辅助油箱) | 1993 | 9.14 | 刚硬地面 |
3 | 欧盟 | A320机身框段 | 1993 | 7.00 | 刚硬地面 |
4 | 欧盟 | A320机身框段 | 1995 | 6.70 | 刚硬地面 |
5 | 美国 | 737-200机身框段(含辅助油箱) | 1999 | 9.14 | 刚硬地面 |
6 | 欧盟 | A320机身框段 | 1999 | 6.78 | 刚硬地面 |
7 | 美国 | 737-100机身框段(含货舱货物) | 2000 | 9.14 | 刚硬地面 |
8 | 美国 | F-28机身框段 | 2001 | 9.20 | 刚硬地面 |
9 | 日本 | YS-11机身框段 | 2001 | 6.10 | 刚硬地面 |
10 | 日本 | YS-11机身框段(含货舱货物) | 2002 | 7.40 | 刚硬地面 |
11 | 美国 | 波音787机身框段 | 2007 | 9.14 | 刚硬地面 |
12 | 中国 | 支线客机机身框段 | 2012 | 6.85 | 刚硬地面 |
13 | 美国 | F-28机身框段(机身翼盒) | 2017 | 8.90 | 砂石土面 |
14 | 美国 | F-28机身框段(含货舱货物) | 2017 | 8.87 | 软土地面 |
15 | 美国 | Hawker 4000机身框段 | 2017 | 9.14 | 刚硬地面 |
16 | 欧盟 | 复合材料飞机机身框段 | 2017 | 9.14 | 刚硬地面 |
17 | 中国 | 大型运输类飞机机身框段 | 2019 | 6.02 | 刚硬地面 |
18 | 中国 | 典型金属民机机身框段 | 2020 | 5.91 | 刚硬地面 |
19 | 美国 | 挑战者601机身框段(中央翼盒段) | 2021 | 9.14 | 刚硬地面 |
Table 2
Materials properties parameters[33]
部件 | 材料 | 密度 ρ /(10-6 kg·mm-3) | 弹性模量 E /GPa | 泊松比 μ | 屈服应力 σy /MPa | 极限应变 ε |
---|---|---|---|---|---|---|
机身框(含剪切角片) | 2024-T42 | 2.67 | 72.4 | 0.33 | 275.000 | 0.18 |
长桁 | 2099-T83 | 2.63 | 78.6 | 0.31 | 475.755 | 0.10 |
蒙皮 | 2024-T3 | 2.67 | 72.4 | 0.33 | 324.065 | 0.16 |
货舱纵梁 | 2196-T8511 | 2.63 | 76.5 | 0.31 | 510.230 | 0.10 |
地板连接角片,立柱 | 7075-T7351 | 2.70 | 72.4 | 0.33 | 623.000 | 0.10 |
上部桁架 | 钢 | 7.80 | 210.0 | 0.30 |
Table 3
Fasteners properties parameters[33]
牌号 | 材料 | 密度 ρ /(10-6 kg·mm-3) | 弹性模量 E /GPa | 泊松比 μ | 屈服应力 σy /MPa | 极限拉伸载荷 Tu /N | 极限剪切载荷 Nu /N |
---|---|---|---|---|---|---|---|
MS20470AD5-6 | 7050-T73 | 2.82 | 72.4 | 0.33 | 441.3 | 5 093 | 3 738 |
NAS1097KE5-6 | 7050-T73 | 2.82 | 72.4 | 0.33 | 441.3 | 3 665 | 5 051 |
MS20470E5-6 | 2017-T4 | 2.70 | 72.4 | 0.33 | 379.2 | 6 300 | 4 389 |
NAS1465-03 | 合金钢 | 7.80 | 210.0 | 0.33 | 500.0 | 7 702 | 9 359 |
CFBL1001AG5-2 | 钛合金 | 4.50 | 117.0 | 0.33 | |||
CFBL1002AG5-2 | 钛合金 | 4.50 | 117.0 | 0.33 | |||
CFBL1003AG5-2 | 钛合金 | 4.50 | 117.0 | 0.33 |
1 | GUIDA M, MARULO F, ABRATE S. Advances in crash dynamics for aircraft safety[J]. Progress in Aerospace Sciences, 2018, 98: 106-123. |
2 | 牟浩蕾, 解江, 冯振宇. 民机机身结构适坠性研究[J]. 交通运输工程学报, 2020, 20(3): 17-39. |
MOU H L, XIE J, FENG Z Y. Research on crashworthiness of civil aircraft fuselage structures[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 17-39 (in Chinese). | |
3 | MOU H L, XIE J, FENG Z Y. Research status and future development of crashworthiness of civil aircraft fuselage structures: An overview[J]. Progress in Aerospace Sciences, 2020, 119: 100644. |
4 | WILLIAMS M S, HAYDUK R J. Vertical drop test of a transport fuselage section located forward of the wing[R]. Washington D. C. : NASA, 1983. |
5 | FASANELLA E L, ALFARO-BOU E. Vertical drop test of a transport fuselage section located aft of the wing[R]. Washington D. C. : NASA, 1986. |
6 | ABRAMOWITZ A, SMITH T G, VU T. Vertical drop test of a narrow-body transport fuselage section with a conformable auxiliary fuel tank onboard [R]. Washington D. C. : FAA, 2000. |
7 | JACKSON K, LITTELL J, ANNETT M, et al. Finite element simulations of two vertical drop tests of F-28 fuselage sections[R]. Washington D. C. : NASA, 2018. |
8 | LITTELL J. A summary of results from two full-scale Fokker F28 fuselage section drop tests[R]. Washington, D. C. : NASA, 2018. |
9 | RASSAIAN M. Virtual test & simulation [C]∥ AIAA Complex Aerospace Systems Exchange. Reston: AIAA, 2013. |
10 | OLIVARES G. Crashworthiness certification by analysis [C]∥JAMS 2018 Technical Review Meeting. Washington D. C. : JAMS, 2018. |
11 | HASHEMI S M R, WALTON A C. A systematic approach to aircraft crashworthiness and impact surface material models[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2000, 214(5): 265-280. |
12 | RICCIO A, SAPUTO S, SELLITTO A, et al. An insight on the crashworthiness behavior of a full-scale composite fuselage section at different impact angles[J]. Aerospace, 2019, 6(6): 72. |
13 | DI PALMA L, DI CAPRIO F, CHIARIELLO A, et al. Vertical drop test of composite fuselage section of a regional aircraft[J]. AIAA Journal, 2019, 58(1): 474-487. |
14 | KUMAKURA I, MINEGISHI M, IWASAKI K, et al. Summary of vertical drop tests of YS-11 transport fuselage sections[R]. New York: SAE International, 2003. |
15 | 刘小川, 郭军, 孙侠生, 等. 民机机身段和舱内设施坠撞试验及结构适坠性评估[J]. 航空学报, 2013, 34(9): 2130-2140. |
LIU X C, GUO J, SUN X S, et al. Drop test and structure crashworthiness evaluation of civil airplane fuselage section with cabin interiors[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2130-2140 (in Chinese). | |
16 | LIU X C, GUO J, BAI C Y, et al. Drop test and crash simulation of a civil airplane fuselage section[J]. Chinese Journal of Aeronautics, 2015, 28(2): 447-456. |
17 | 刘小川, 白春玉, 惠旭龙, 等. 民机机身结构耐撞性研究的进展与挑战[J]. 固体力学学报, 2020, 41(4): 293-323. |
LIU X C, BAI C Y, XI X L, et al. Progress and challenge of research on crashworthiness of civil airplane fuselage structures[J]. Chinese Journal of Solid Mechanics, 2020, 41(4): 293-323 (in Chinese). | |
18 | 张欣玥, 惠旭龙, 刘小川, 等. 典型金属民机机身结构坠撞特性试验研究[J]. 航空学报, 2022, 43(6): 526234. |
ZHANG X Y, XI X L, LIU X C, et al. Experimental study on crash characteristics of typical metal civil aircraft fuselage structure[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 526234 (in Chinese). | |
19 | ABRAMOWITZ A, SMITH T G, VU T, et al. Vertical drop test of an ATR42-300 airplane [R]. Washington D. C. : FAA, 2006. |
20 | PAZ MENDEZ J, DÍAZ GARCIA J, ROMERA RODRIGUEZ L E, et al. Crashworthiness study on hybrid energy absorbers as vertical struts in civil aircraft fuselage designs[J]. International Journal of Crashworthiness, 2020, 25(4): 430-446. |
21 | RICCIO A, SAPUTO S, SELLITTO A, et al. A numerical assessment on the influences of material toughness on the crashworthiness of a composite fuselage barrel[J]. Applied Sciences, 2020, 10(6): 2019. |
22 | REN Y R, XIANG J W, ZHENG J Q, et al. Crashworthiness analysis of aircraft fuselage with sine-wave beam structure[J]. Chinese Journal of Aeronautics, 2016, 29(2): 403-410. |
23 | 任毅如, 向锦武, 罗漳平, 等. 客舱地板斜撑杆对民机典型机身段耐撞性能的影响[J]. 航空学报, 2010, 31(2): 271-276. |
REN Y R, XIANG J W, LUO Z P, et al. Effect of cabin-floor oblique strut on crashworthiness of typical civil aircraft fuselage section[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(2): 271-276 (in Chinese). | |
24 | MOU H L, ZOU T C, FENG Z Y, et al. Crashworthiness analysis and evaluation of fuselage section with sub-floor composite sinusoidal specimens[J]. Latin American Journal of Solids and Structures, 2016, 13(6): 1186-1202. |
25 | THOMAS M A, CHITTY D, GILDEA M L, et al. Constitutive soil properties for cuddeback lake, California and Carson sink, Nevada[R]. Washington D. C. : NASA, 2008. |
26 | THOMAS M A, CHITTY D. Constitutive soil properties for mason sand and kennedy space center[R]. Washington D. C. : NASA, 2011. |
27 | DING M L, BINIENDA W K. Numerical approach to a reverse problem using LS-DYNA3D analysis: Collision of an aeroplane door with the ground[J]. International Journal of Crashworthiness, 2020, 25(2): 147-163. |
28 | EVANS W, JONSON D, WALKER M. An Eulerian approach to soil impact analysis for crashworthiness applications[J]. International Journal of Impact Engineering, 2016, 91: 14-24. |
29 | 冯振宇, 李恒晖, 刘义, 等. 中低应变率下7075-T7351铝合金本构与失效模型对比[J]. 材料导报, 2020, 34(12): 12088-12093. |
FENG Z Y, LI H H, LIU Y, et al. Comparison of constitutive and failure models of 7075-T7351 alloy at intermediate and low strain rates[J]. Materials Reports, 2020, 34(12): 12088-12093 (in Chinese). | |
30 | 冯振宇, 解江, 李恒晖, 等. 大飞机货舱地板下部结构有限元建模与适坠性分析[J]. 航空学报, 2019, 40(2): 522394. |
FENG Z Y, XIE J, LI H H, et al. Finite element modeling and crashworthiness analysis of large aeroplane sub-cargo structure[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2): 522394 (in Chinese). | |
31 | 冯振宇, 程坤, 赵一帆, 等. 运输类飞机典型货舱地板下部结构冲击吸能特性[J]. 航空学报, 2019, 40(9): 222907. |
FENG Z Y, CHENG K, ZHAO Y F, et al. Energy-absorbing characteristics of a typical sub-cargo fuselage section of a transport category aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9): 222907 (in Chinese). | |
32 | MOU H L, XIE J, LIU Y, et al. Impact test and numerical simulation of typical sub-cargo fuselage section of civil aircraft[J]. Aerospace Science and Technology, 2020, 107: 106305. |
33 | 解江, 牟浩蕾, 冯振宇, 等. 大飞机典型货舱下部结构冲击试验及数值模拟[J]. 航空学报, 2022, 43(6): 525890. |
XIE J, MOU H L, FENG Z Y, et al. Impact characteristics of typical sub-cargo structure of large aircraft: Tests and numerical simulation[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 525890 (in Chinese). | |
34 | EIBAND A. Human tolerance to rapidly applied accelerations: A summary of the literature[R]. Washington D. C. : NASA, 1959. |
[1] | Haolei MOU, Weiwei XIE, Jiang XIE, Zhenyu FENG, Lanhui LIN. Occupant injury analysis and aircraft crashworthiness evaluation under crash scenarios [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 228786-228786. |
[2] | Liping LIU, Yuyang QI, Yueguo LIN, Rui BAO, Jianxin XU, Zhenyu FENG, Guanghui QING. Tensile failure of carbon fiber composite material bonded-rivet hybrid repaired structure [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(24): 428676-428676. |
[3] | Xiaochuan LIU, Xinyue ZHANG, Xulong XI, Yabin YAN, Juntai MA. Influence of structural repairs on crashworthiness of civil aircraft fuselage [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 227517-227517. |
[4] | ZHANG Xinyue, XI Xulong, LIU Xiaochuan, BAI Chunyu. Experimental study on crash characteristics of typical metal civil aircraft fuselage structure [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(6): 526234-526234. |
[5] | FENG Zhenyu, CHI Qilin, CUI Huaitian, XIE Jiang, MU Haolei. Comparison of ballistic impact behaviors between plain woven and 2.5D woven fabric composite plates [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(5): 425116-425116. |
[6] | SONG Wei, ZHANG Ning, ZHU Jian, DONG Lei, JIANG Zenghui. Research status and application of wind tunnel drop test technology: Review [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(6): 24417-024417. |
[7] | GUO Yidong, MA Yu'e, LI Peiyao. Low velocity impact response of additively manufactured titanium alloy micro-truss sandwich panels [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(2): 423820-423820. |
[8] | AI Bangcheng, SONG Wei, DONG Lei, JIANG Zenghui. Review of aircraft-store separation compatibility of internal weapons [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(10): 23809-023809. |
[9] | FENG Zhenyu, CHENG Kun, ZHAO Yifan, LI Henghui, XIE Jiang, MOU Haolei, WANG Yafeng, Ge Yujing. Energy-absorbing characteristics of a typical sub-cargo fuselage section of a transport category aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(9): 222907-222907. |
[10] | FENG Wenchun, ZHU Yongfeng. Respiration model and test analysis of continuous oxygen supply system for members in large transport aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(2): 522212-522212. |
[11] | FENG Zhenyu, XIE Jiang, LI Henghui, CHENG Kun, MA Congyao, MOU Haolei. Finite element modeling and crashworthiness analysis of large aeroplane sub-cargo structure [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(2): 522394-522394. |
[12] | WANG Cunxian, GAO Haomai, GONG Xu, SUO Tao, LI Yulong, TANG Zhongbin, XUE Pu, HOU Liang, LIN Jiajian. Impact responses of aeronautic riveting structures [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(1): 522484-522484. |
[13] | WANG Yuntao. An overview of HiLiftPW-1 to HiLiftPW-3 numerical simulation technologies [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(7): 21997-021997. |
[14] | DU Jinzhu, MENG Fanxing, LU Xuefeng. Criteria for evaluation of landing gear drop test based on energy method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(4): 221375-221375. |
[15] | ZHAO Qibing, LIU Yong. Analysis of degree of controllability with multi-rotor aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(S1): 721561-721561. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341