[1] 宁建国, 宋卫东, 任会兰, 等. 冲击载荷作用下材料与结构的响应与防护[J]. 固体力学学报, 2010, 31(5):532-552. NING J G, SONG W D, REN H L, et al. Response and protection of materials and structures under impact loadings[J]. Chinese Journal of Solid Mechanics, 2010, 31(5):532-552(in Chinese). [2] LU G, YU T X. Energy absorption of structures and materials[M]. Cambridge:Woodhead Publishing Limited, 2003. [3] ALEXANDER R M. Principles of animal locomotion[M]. Princeton:Princeton University Press, 2003. [4] YANG X F, MA J X, WEN D S, et al. Crashworthy design and energy absorption mechanisms for helicopter structures:A systematic literature review[J]. Progress in Aerospace Sciences, 2020, 114:100618. [5] HU D Y, LUO M, YANG J L. Experimental study on crushing characteristics of brittle fibre/epoxy hybrid composite tubes[J]. International Journal of Crashworthiness, 2010, 15(4):401-412. [6] WANG Y F, FENG J S, WU J H, et al. Effects of fiber orientation and wall thickness on energy absorption characteristics of carbon-reinforced composite tubes under different loading conditions[J]. Composite Structures, 2016, 153:356-368. [7] XING B F, HU D Y, SUN Y X, et al. Effects of hinges and deployment angle on the energy absorption characteristics of a single cell in a deployable energy absorber[J]. Thin-Walled Structures, 2015, 94:107-119. [8] LIU Y D, YU J L, ZHENG Z J, et al. A numerical study on the rate sensitivity of cellular metals[J]. International Journal of Solids and Structures, 2009, 46(22-23):3988-3998. [9] LI Z B, YU J L, GUO L W. Deformation and energy absorption of aluminum foam-filled tubes subjected to oblique loading[J]. International Journal of Mechanical Sciences, 2012, 54(1):48-56. [10] DHARMASENA K, QUEHEILLALT D, WADLEY H, et al. Dynamic response of a multilayer prismatic structure to impulsive loads incident from water[J]. International Journal of Impact Engineering, 2009, 36(4):632-643. [11] ELNASRI I, ZHAO H. Impact perforation of sandwich panels with aluminum foam core:a numerical and analytical study[J]. International Journal of Impact Engineering, 2016, 96:50-60. [12] XIANG J W, DU J X. Energy absorption characteristics of bio-inspired honeycomb structure under axial impact loading[J]. Materials Science and Engineering:A, 2017, 696:283-289. [13] BELLAMKONDA R V. Marine inspiration[J]. Nature Materials, 2008, 7(5):347-348. [14] MIRKHALAF M, ZHOU T, BARTHELAT F. Simultaneous improvements of strength and toughness in topologically interlocked ceramics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(37):9128-9133. [15] ZHANG D K, LI C H, JIA D Z, et al. Specific grinding energy and surface roughness of nanoparticle jet minimum quantity lubrication in grinding[J]. Chinese Journal of Aeronautics, 2015, 28(2):570-581. [16] YANG X F, MA J X, SHI Y L, et al. Crashworthiness investigation of the bio-inspired bi-directionally corrugated core sandwich panel under quasi-static crushing load[J]. Materials & Design, 2017, 135:275-290. [17] YANG X F, SUN Y X, YANG J L, et al. Out-of-plane crashworthiness analysis of bio-inspired aluminum honeycomb patterned with horseshoe mesostructure[J]. Thin-Walled Structures, 2018, 125:1-11. [18] YANG X F, MA J X, SUN Y X, et al. Ripplecomb:a novel triangular tube reinforced corrugated honeycomb for energy absorption[J]. Composite Structures, 2018, 202:988-999. [19] ZHANG Z Q, YU H, YANG J L, et al. How cat lands:insights into contribution of the forelimbs and hindlimbs to attenuating impact force[J]. Chinese Science Bulletin, 2014, 59(26):3325-3332. [20] ZHANG Z Q, YANG J L, YU H. Effect of flexible back on energy absorption during landing in cats:A biomechanical investigation[J]. Journal of Bionic Engineering, 2014, 11(4):506-516. [21] YU H, YANG J L, SUN Y X. Energy absorption of spider orb webs during prey capture:A mechanical analysis[J]. Journal of Bionic Engineering, 2015, 12(3):453-463. [22] XING Y, YANG J L. Stiffness distribution in natural insect cuticle reveals an impact resistance strategy[J]. Journal of Biomechanics, 2020, 109:109952. [23] TIMOSHENKO S P. Theory of elastic stability[M]. New York:McGraw-Hill, 1961. [24] YANG X F, MA J X, SUN Y X, et al. An internally nested circular-elliptical tube system for energy absorption[J]. Thin-Walled Structures, 2019, 139:281-293. [25] WANG H B, YANG J L, LIU H, et al. Internally nested circular tube system subjected to lateral impact loading[J]. Thin-Walled Structures, 2015, 91:72-81. [26] SHIM V P W, TAY B Y, STRONGE W J. Dynamic crushing of strain-softening cellular structures-A one-dimensional analysis[J]. Journal of Engineering Materials and Technology, 1990, 112(4):398-405. [27] GAO Z Y, YU T X, LU G. A study on type II structures. Part I:A modified one-dimensional mass-spring model[J]. International Journal of Impact Engineering, 2005, 31(7):895-910. [28] GAO Z Y, YU T X, LU G. A study on type II structures. Part II:dynamic behavior of a chain of pre-bent plates[J]. International Journal of Impact Engineering, 2005, 31(7):911-926. [29] JOHNSON K L. Contact mechanics[M]. Cambridge:Cambridge University Press, 1985. [30] ABU JADAYIL W M, JABER N M. Numerical prediction of optimum hollowness and material of hollow rollers under combined loading[J]. Materials & Design, 2010, 31(3):1490-1496. [31] SHIM V P W, LAN R, GUO Y B, et al. Elastic wave propagation in cellular systems-Experiments on single rings and ring systems[J]. International Journal of Impact Engineering, 2007, 34(10):1565-1584. [32] JAFARPOUR M, ESHGHI S, DARVIZEH A, et al. Functional significance of graded properties of insect cuticle supported by an evolutionary analysis[J]. Journal of the Royal Society, Interface, 2020, 17(168):20200378. [33] RAJABI H, JAFARPOUR M, DARVIZEH A, et al. Stiffness distribution in insect cuticle:a continuous or a discontinuous profile?[J]. Journal of the Royal Society, Interface, 2017, 14(132):20170310. |