[1] 张攀峰, 詹世革. 从国家自然科学基金资助看高超声速流动研究的发展现状[J]. 航空学报, 2015, 36(1):1-6. ZHANG P F,ZHAN S G.Development of hypersonic flow research in China based on supported projects of NSFC[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):1-6(in Chinese).
[2] 李建林. 临近空间高超声速飞行器发展研究[M]. 北京:中国宇航出版社, 2012. LI J L. Research on development of hypersonic near space vehicle[M]. Beijing:China Astronautic Publishing House, 2012(in Chinese).
[3] WRIGHT R L, ZOBY E V. Flight boundary layer transition measurements on a slender cone at Mach 20:AIAA-1977-0719[R]. Reston, VA:AIAA, 1977.
[4] ILIFF K W, SHAFER M F. A comparison of hypersonic vehicle flight and prediction results:NASA TM-104313[R]. Washington, D.C.:NASA, 1995.
[5] KUNTZ D W, POTTER D L. Boundary layer transition and hypersonic flight testing:AIAA-2007-0308[R]. Reston, VA:AIAA, 2007.
[6] HOWARD F G. Single-thermocouple method for determining heat flux to a thermally thick wall:NASA TND-4737[R]. Washington, D.C.:NASA, 1968.
[7] 钱炜祺, 蔡金狮. 再入航天飞机表面热流密度辨识[J]. 宇航学报, 2000, 21(4):1-6. QIAN W Q, CAI J S. Surface heat flux identification of reentry space shuttle[J]. Journal of Astronautica, 2000, 21(4):1-6(in Chinese).
[8] 钱炜祺, 周宇, 何开锋, 等. 表面热流辨识技术在边界层转捩位置测量中的应用初步研究[J]. 实验流体力学, 2012, 26(1):74-78. QIAN W Q, ZHOU Y, HE K F, et al. A preliminary study for application of surface heat flux estimation technology in transition measurement[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(1):74-78(in Chinese).
[9] 张志成, 潘梅林, 刘初平. 高超声速气动热和热防护[M]. 北京:国防工业出版社, 2003. ZHANG Z C, PAN M L, LIU C P. Aerodynamic heating and TPS for hypersonic aircrafts[M]. Beijing:National Defence Industry Press, 2003(in Chinese).
[10] 罗纪生. 高超声速边界层转捩及预示[J]. 航空学报, 2015, 36(1):357-372. LUO J S. Transition and prediction for hypersonic boundary layers[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):357-372(in Chinese).
[11] 中国空气动力研究与发展中心.高超声速飞行器热环境及烧蚀/侵蚀综合分析软件系统[简称AEROHEATS,V1.0版].中华人民共和国计算机软件著作权登记证书(登记号:2013SR132872, 证书号:0638634号)[Z]. 2013. China Aerodynamics Research and Development Center. Thermal environment and ablation/erosion analysis software[AEROHEATS, V1.0]. Computer Software Copyright Registration Certificate (Registration Mark:2013SR132872, Certificate No.0638634)[Z].2013(in Chinese).
[12] 国义军, 代光月, 桂业伟, 等. 再入飞行器非平衡气动加热工程计算方法研究[J]. 空气动力学学报, 2015, 33(5):581-587. GUO Y J, DAI G Y, GUI Y W, et al. Engineering calculation of non-equilibrium effects on thermal environment of reentry vehicles[J]. Acta Aerodynamica Sinica, 2015, 33(5):581-587(in Chinese).
[13] 国义军. 炭化材料烧蚀热响应理论分析与工程应用[J]. 空气动力学学报, 1994, 12(1):94-99. GUO Y J. Analysis of ablative thermal response of charring material with engineering applications[J]. Acta Aerodynamica Sinica, 1994, 12(1):94-99(in Chinese).
[14] 国义军, 童福林, 桂业伟. 烧蚀外形方程差分计算方法研究[J]. 空气动力学学报, 2009, 27(4):480-484. GUO Y J, TONG F L, GUI Y W. Finite difference schemes for solution of the nosetip shape change equation[J]. Acta Aerodynamica Sinica, 2009, 27(4):480-484(in Chinese).
[15] 国义军, 桂业伟, 童福林. C/SiC复合材料烧蚀机理和通用计算模型研究[J]. 空气动力学学报, 2012, 30(1):34-38. GUO Y J, GUI Y W, TONG F L. Thermochemical ablation mechanisms and general relationship for C/SiC material oxidation[J]. Acta Aerodynamica Sinica, 2012, 30(1):34-38(in Chinese).
[16] 国义军, 桂业伟, 童福林. 碳基材料氧化烧蚀的双平台理论和反应控制机理[J]. 空气动力学学报, 2014, 32(6):755-760. GUO Y J, GUI Y W, TONG F L. A dual platform theory for carbon-based material oxidation with reaction-diffusion rate controlled kinetics[J]. Acta Aerodynamica Sinica, 2014, 32(6):755-760(in Chinese).
[17] 国义军, 石卫波. 电弧加热器试验条件下端头烧蚀外形计算[J]. 空气动力学学报, 2002, 20(1):115-119. GUO Y J, SHI W B. Numerical simulation of nosetip shape change during ablation on arc heater[J]. Acta Aerodynamica Sinica, 2002, 20(1):115-119(in Chinese).
[18] 国义军, 刘强, 童福林, 等. 表面涂漆对火箭尾翼热结构的影响[J]. 空气动力学学报, 2007, 25(1):23-28. GUO Y J, LIU Q, TONG F L, et al. Effect of paint coating on the internal thermal structure of rocket wing[J]. Acta Aerodynamica Sinica, 2007, 25(1):23-28(in Chinese).
[19] SCHLICHTING H. Boundary-layer theory[M]. New York:McGraw-Hill Book Company, 1979.
[20] ANDERSON J D,Jr. Hypersonic and high temperature gas dynamics[M]. New York:McGraw-Hill Book Company, 1989.
[21] 苏彩虹, 周恒. 超音速和高超音速有攻角圆锥边界层的转捩预测[J]. 中国科学G辑, 物理学力学天文学, 2009, 39(6):874-882. SU C H, ZHOU H. Transition prediction for supersonic and hypersonic boundary layers on a cone with an angle of attack[J]. Science in China Series G Physics, Mechanics & Astronomy, 2009, 39(6):874-882(in Chinese).
[22] TIMMER H G, ARNE C L,STOKES T R, et al. Aerothermodynamic characteristics of slender ablating re-entry vehicles:AIAA-1970-0826[R]. Reston, VA:AIAA, 1970.
[23] THYSON N, NEURINGER J, PALLONE A, et al. Nose tip shape change predictions during atmospheric reentry:AIAA-1970-0827[R]. Reston, VA:AIAA, 1970.
[24] 赵梦熊. "联盟"号返回舱空气动力专集[R]. 北京:航天工业总公司第七一○所, 1995. ZHAO M X. Special assemble of aerodynamics of Russian Union aircraft reentry module[R]. Beijing:The 701 Institute of China Aerospace Industry Corporation, 1995(in Chinese).
[25] WIDHOPF G F. Laminar, transition, and turbulent heat transfer measurements on a yawed blunt conical nosetip:AD748292[R].Paris:AGARD, 1972.
[26] THOMPSON R A, HAMILLTON H H, BERRY S A, et al. Hypersonic boundary layer transition for X-33 phase Ⅱ vehicle:AIAA-1998-0867[R]. Reston, VA:AIAA, 1998.
[27] BERRY S A, DARYABEIGI K, WUSTER K. Boundary layer transition on X-43A:AIAA-2008-3736[R]. Reston, VA:AIAA, 2008.
[28] CLINE P B. Entry heat transfer[M]//SAE Aerospace Applied Thermodynamics Manual.2nd ed.1969:517-598.
[29] 卞荫贵, 钟家康. 高温边界层传热[M]. 北京:科学出版社, 1986. BIAN Y G, ZHONG J K. High temperature boundary layer heat transfer[M]. Beijing:Science Press, 1986(in Chinese). |