ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2023, Vol. 44 ›› Issue (6): 127391-127391.doi: 10.7527/S1000-6893.2022.27391
• Fluid Mechanics and Flight Mechanics • Previous Articles Next Articles
Guotao YANG1, Zhenjiang YUE1,2(), Li LIU1,2
Received:
2022-05-09
Revised:
2022-06-04
Accepted:
2022-09-15
Online:
2023-03-25
Published:
2022-09-30
Contact:
Zhenjiang YUE
E-mail:mountain_yue@bit.edu.cn
Supported by:
CLC Number:
Guotao YANG, Zhenjiang YUE, Li LIU. Rapid prediction of global hypersonic vehicle aerothermodynamics based on adaptive sampling[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 127391-127391.
Table 1
Results comparison of One-Shot, CV-Voronoi, APSFC and FCHSW
测试 函数 | One-Shot | CV-Voronoi | APSFC | FCHSW |
---|---|---|---|---|
TG | 27.7 | 27.3 | 30.5 | 27.2 |
ES | 41.2 | 26.8 | 50.0 | 26.5 |
PK | 54.3 | 43.9 | 57.9 | 41.8 |
AK | 163.2 | 165.8 | 226.4 | 132.4 |
GP | 36.4 | 40.4 | 40.4 | 36.3 |
MZ | 303.3 | 289.9 | 417.6 | 227.6 |
HT | 157.9 | 132.6 | 193.0 | 132.1 |
CH | 132.9 | 126.9 | 150.6 | 125.0 |
DP | 280.8 | 283.2 | 288.6 | 279.0 |
Table 2
Number of modeling times and time required in calculation process
测试 函数 | CV-Voronoi | APSFC | FCHSW | |||
---|---|---|---|---|---|---|
建模次数 | 训练时间/s | 建模次数 | 训练时间/s | 建模次数 | 训练时间/s | |
TG | 335.0±59.7 | 1.4±0.2 | 209.7±37.1 | 0.5±0.2 | 153.3±31.1 | 0.8±0.2 |
ES | 320.0±62.8 | 1.3±0.2 | 633.9±314.4 | 1.3±0.8 | 147.8±33.4 | 0.6±0.2 |
PK | 952.0±297.7 | 3.1±0.9 | 833.8±267.1 | 1.7±0.6 | 399.5±83.7 | 1.5±0.3 |
AK | 13 850.1±2 054.2 | 50.3±12.6 | 13 284.7±5 809.0 | 77.1±82.5 | 4 880.1±1 099.4 | 18.3±9.3 |
GP | 792.2±173.2 | 2.7±0.6 | 393.0±120.9 | 0.8±0.2 | 313.7±65.5 | 1.3±0.3 |
MZ | 42 466.6±7 781.3 | 539.8±20.7 | 45 708.1±23 123.0 | 1 346.5±113.4 | 14 624.6±2 448.4 | 114.8±23.0 |
HT | 8 831.3±1 885.8 | 52.2±15.9 | 6 542.3±3 395.1 | 67.9±67.9 | 2 862.4±436.4 | 19.8±4.2 |
CH | 7 953.6±1 255.7 | 66.7±13.5 | 2 778.5±546.8 | 18.1±6.4 | 1 683.7±272.5 | 22.7±14.7 |
DP | 39 985.3±5 723.6 | 1 201.9±360.3 | 7 030.8±1 527.0 | 127.8±54.8 | 6 870.2±956.5 | 353.4±73.8 |
Table 4
Summary of test results about number of new samples per round
测试函数 | |||||
---|---|---|---|---|---|
TG | 27.2 | 29.8 | 30.8 | 31.6 | 32.2 |
ES | 26.5 | 27.9 | 30.9 | 33.0 | 36.6 |
PK | 41.8 | 44.0 | 43.7 | 45.8 | 48.3 |
AK | 132.4 | 133.9 | 134.5 | 134.3 | 137.9 |
GP | 36.3 | 39.0 | 40.5 | 41.8 | 43.9 |
MZ | 227.6 | 229.4 | 229.2 | 231.7 | 235.6 |
HT | 132.1 | 140.7 | 138.1 | 139.4 | 141.4 |
CH | 125.0 | 132.8 | 128.7 | 135.6 | 134.8 |
DP | 279.0 | 287.9 | 297.9 | 301.9 | 297.6 |
Table 5
Summary of test results about fluctuation coefficient
测试函数 | |||||||
---|---|---|---|---|---|---|---|
TG | 26.8 | 26.5 | 27.0 | 27.2 | 28.3 | 28.6 | 29.1 |
ES | 38.8 | 34.4 | 30.5 | 26.5 | 26.8 | 28.4 | 30.6 |
PK | 44.8 | 43.5 | 42.3 | 41.8 | 41.8 | 42.7 | 46.8 |
AK | 130.4 | 129.6 | 131.3 | 132.4 | 141.2 | 143.5 | 156.7 |
GP | 35.8 | 35.3 | 36.2 | 36.3 | 37.2 | 37.1 | 40.6 |
MZ | 232.7 | 233.4 | 229.4 | 227.6 | 232.2 | 233.7 | 244.7 |
HT | 147.1 | 142.3 | 137.7 | 132.1 | 133.0 | 136.1 | 136.6 |
CH | 134.6 | 129.7 | 131.0 | 125.0 | 123.6 | 127.9 | 126.7 |
DP | 287.1 | 293.9 | 292.4 | 279.0 | 283.9 | 288.8 | 288.5 |
Table 7
Results comparison of 10 test cases using RPM
测试工况 | Ma | α/(°) | H/km | 驻点热流/( | 驻点误差/% | 整体误差/% | |
---|---|---|---|---|---|---|---|
RPM | CFD | ||||||
Test1 | 5.0 | 8.9 | 43.3 | 207.8 | 215.3 | 3.6 | 6.9 |
Test2 | 6.7 | 17.8 | 53.3 | 291.1 | 299.6 | 2.9 | 5.0 |
Test3 | 8.3 | 2.2 | 56.7 | 475.5 | 455.5 | 4.2 | 7.1 |
Test4 | 10.0 | 15.6 | 33.3 | 3 661.9 | 3 698.7 | 1.0 | 5.0 |
Test5 | 11.7 | 0.0 | 36.7 | 4 703.2 | 4 679.3 | 0.5 | 4.8 |
Test6 | 13.3 | 11.1 | 60.0 | 1 525.8 | 1 519.6 | 0.4 | 2.6 |
Test7 | 15.0 | 20.0 | 46.7 | 5 312.3 | 5 287.0 | 0.5 | 4.9 |
Test8 | 16.7 | 6.7 | 30.0 | 22 447.9 | 22 863.0 | 1.9 | 5.1 |
Test9 | 18.3 | 4.4 | 50.0 | 8 062.7 | 8 054.3 | 0.1 | 3.3 |
Test10 | 20.0 | 13.3 | 40.0 | 18 983.5 | 19 233.9 | 1.3 | 3.4 |
1 | 黄伟, 罗世彬, 王振国. 临近空间高超声速飞行器关键技术及展望[J]. 宇航学报, 2010, 31(5): 1259-1265. |
HUANG W, LUO S B, WANG Z G. Key techniques and prospect of near-space hypersonic vehicle[J]. Journal of Astronautics, 2010, 31(5): 1259-1265 (in Chinese). | |
2 | 彭治雨, 石义雷, 龚红明, 等. 高超声速气动热预测技术及发展趋势[J]. 航空学报, 2015, 36(1): 325-345. |
PENG Z Y, SHI Y L, GONG H M, et al. Hypersonic aeroheating prediction technique and its trend of development[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 325-345 (in Chinese). | |
3 | 喻成璋, 刘卫华. 高超声速飞行器气动热预测技术研究进展[J]. 航空科学技术, 2021, 32(2): 14-21. |
YU C Z, LIU W H. Research status of aeroheating prediction technology for hypersionic aircraft[J]. Aeronautical Science & Technology, 2021, 32(2): 14-21 (in Chinese). | |
4 | 杨恺, 高效伟. 高超声速气动热环境工程算法[J]. 导弹与航天运载技术, 2010(4): 19-23. |
YANG K, GAO X W. Engineering algorithm for aeroheating environment of hypersonic aircrafts[J]. Missiles and Space Vehicles, 2010(4): 19-23 (in Chinese). | |
5 | DOWELL E H. Eigenmode analysis in unsteady aerodynamics-reduced-order models[J]. AIAA Journal, 1996, 34(8): 1578-1583. |
6 | YONDO R, ANDRéS E, VALERO E. A review on design of experiments and surrogate models in aircraft real-time and many-query aerodynamic analyses[J]. Progress in Aerospace Sciences, 2018, 96: 23-61. |
7 | 陈海昕, 邓凯文, 李润泽. 机器学习技术在气动优化中的应用[J]. 航空学报, 2019, 40(1): 522480. |
CHEN H X, DENG K W, LI R Z. Utilization of machine learning technology in aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522480 (in Chinese). | |
8 | YAN X X, HAN J L, ZHANG B, et al. Model reduction of aerothermodynamic for hypersonic aerothermoelasticity based on POD and Chebyshev method[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(10): 3734-3748. |
9 | 张智超, 高太元, 张磊, 等. 基于径向基神经网络的气动热预测代理模型[J]. 航空学报, 2021, 42(4): 524167. |
ZHANG Z C, GAO T Y, ZHANG L, et al. Aeroheating agent model based on radial basis function neural network[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524167 (in Chinese). | |
10 | GARUD S S, KARIMI I A, KRAFT M. Design of computer experiments: A review[J]. Computers & Chemical Engineering, 2017, 106: 71-95. |
11 | FORRESTER A I J, SOBESTER A, KEANE A J. Engineering design via surrogate modelling: A practical guide[M]. New York: John Wiley & Sons, 2008: 13-29. |
12 | CROMBECQ K, GORISSEN D, DESCHRIJVER D, et al. A novel hybrid sequential design strategy for global surrogate modeling of computer experiments[J]. SIAM Journal on Scientific Computing, 2011, 33(4): 1948-1974. |
13 | LIU H T, ONG Y S, CAI J F. A survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design[J]. Structural and Multidisciplinary Optimization, 2018, 57(1): 393-416. |
14 | FORRESTER A I J, KEANE A J. Recent advances in surrogate-based optimization[J]. Progress in Aerospace Sciences, 2009, 45(1-3): 50-79. |
15 | 李春娜, 张阳康. 一种适用于气动优化的高效自适应全局优化方法[J]. 航空学报, 2020, 41(5): 623352. |
LI C N, ZHANG Y K. An efficient adaptive global optimization method suitable for aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 623352 (in Chinese). | |
16 | 韩忠华, 许晨舟, 乔建领, 等. 基于代理模型的高效全局气动优化设计方法研究进展[J]. 航空学报, 2020, 41(5): 623344. |
HAN Z H, XU C Z, QIAO J L, et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 623344 (in Chinese). | |
17 | SIMPSON T W, MAUERY T M, KORTE J J, et al. Kriging models for global approximation in simulation-based multidisciplinary design optimization[J]. AIAA Journal, 2001, 39(12): 2233-2241. |
18 | LIU H T, XU S L, MA Y, et al. An adaptive Bayesian sequential sampling approach for global metamodeling[J]. Journal of Mechanical Design, 2016, 138(1): 011404. |
19 | XIONG Y, CHEN W, APLEY D, et al. A non-stationary covariance-based Kriging method for metamodelling in engineering design[J]. International Journal for Numerical Methods in Engineering, 2007, 71(6): 733-756. |
20 | YAO W, CHEN X Q, LUO W C. A gradient-based sequential radial basis function neural network modeling method[J]. Neural Computing and Applications, 2009, 18(5): 477-484. |
21 | FARHANG-MEHR A, AZARM S. Bayesian meta-modelling of engineering design simulations: A sequential approach with adaptation to irregularities in the response behaviour[J]. International Journal for Numerical Methods in Engineering, 2005, 62(15): 2104-2126. |
22 | TURNER C J, CRAWFORD R H, CAMPBELL M I. Multidimensional sequential sampling for NURBs-based metamodel development[J]. Engineering With Computers, 2007, 23(3): 155-174. |
23 | LI G Z, AUTE V, AZARM S. An accumulative error based adaptive design of experiments for offline metamodeling[J]. Structural and Multidisciplinary Optimization, 2010, 40(1): 137-155. |
24 | AUTE V, SALEH K, ABDELAZIZ O, et al. Cross-validation based single response adaptive design of experiments for Kriging metamodeling of deterministic computer simulations[J]. Structural and Multidisciplinary Optimization, 2013, 48(3): 581-605. |
25 | CHEN X, LIU L, ZHOU S, et al. Adding-point strategy for reduced-order hypersonic aerothermodynamics modeling based on fuzzy clustering[J]. Chinese Journal of Mechanical Engineering, 2016, 29(5): 983-991. |
26 | XU S L, LIU H T, WANG X F, et al. A robust error-pursuing sequential sampling approach for global metamodeling based on voronoi diagram and cross validation[J]. Journal of Mechanical Design, 2014, 136(7): 69-74. |
27 | KAMINSKY A L, WANG Y, PANT K, et al. Adaptive sampling techniques for surrogate modeling to create high-dimension aerodynamic loading response surfaces[C]∥ 2018 Applied Aerodynamics Conference. Reston: AIAA, 2018. |
28 | JOHNSON M E, MOORE L M, YLVISAKER D. Minimax and maximin distance designs[J]. Journal of Statistical Planning and Inference, 1990, 26(2): 131-148. |
29 | BEZDEK J C. Pattern recognition with fuzzy objective function algorithms[M]. New York: Springer Science & Business Media, 2013: 1-7. |
30 | ROUSSEEUW P J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis[J]. Journal of Computational and Applied Mathematics, 1987, 20: 53-65. |
31 | OLIVER M A. A tutorial guide to geostatistics: Computing and modelling variograms and Kriging[J]. CATENA, 2014, 113: 56-69. |
32 | 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225. |
HAN Z H. Kriging surrogate model and its application to design optimization: A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225 (in Chinese). | |
33 | 甄华萍, 蒋崇文. 高超声速技术验证飞行器HTV-2综述[J]. 飞航导弹, 2013(6): 7-13. |
ZHEN H P, JIANG C W. Overview of hypersonic technology verification vehicle HTV-2[J]. Aerodynamic Missile Journal, 2013(6): 7-13 (in Chinese). | |
34 | SHI J T, ZHANG L, JIANG B S, et al. Aerodynamic force and heating optimization of HTV-2 typed vehicle[C]∥ 21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017. |
[1] | Jiancheng ZHENG, Zhiguo QU, Xiansi TAN, Zhihuai LI, Gang ZHU, Lujun LI, Wei LIU. Resource management for hypersonic target detection by radar network based on responsibility area partitioning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 329022-329022. |
[2] | Zhangbo CAI, Zhengyu ZHANG, Hao YU, Shuheng ZHAN. Adaptive fast optical flow solution to velocity field of fluorescent oil film [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 128047-128047. |
[3] | Jinzhao DAI, Haixin CHEN. Optimization design method of three⁃dimensional wave cancellation biplane derived by shock⁃wave morphology [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 628942-628942. |
[4] | Xiaoyong LIU, Mingfu WANG, Jianwen LIU, Xin REN, Xuan ZHANG. Review and prospect of research on scramjet [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529878-529878. |
[5] | Bo YANG, He YU, Zichen FAN. Micro-energy analysis method for time-varying error of aero-optical effects [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 128703-128703. |
[6] | Xueliang LI, Chuangchuang LI, Wei SU, Jie WU. Experiment of influence of distributed roughness elements on hypersonic boundary layer instability [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 128627-128627. |
[7] | Jiang LAI, Zhaolin FAN, Qian WANG, Siwei DONG, Fulin TONG, Xianxu YUAN. Direct numerical simulation of hypersonic cone-flare model at angle of attack [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 128610-128610. |
[8] | Youde XIONG, Chuangchuang LI, Zhenhui ZHANG, Jie WU. Measurement of freestream disturbance in hypersonic wind tunnel with hot-wire anemometer [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 129042-129042. |
[9] | Weilin NI, Yonghai WANG, Cong XU, Fenghua CHI, Haizhao LIANG. Cooperative game guidance method for hypersonic vehicles based on reinforcement learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729400-729400. |
[10] | Zhefeng YU, Shichang LIANG, Weibo SHI, Deyang TIAN, Anhua SHI, Dongjun LIAO, Ying YANG. Analysis and evaluation technology for optical radiation and radar scattering characteristics of HTV⁃2⁃like vehicle [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729465-729465. |
[11] | Ping MA, Ning ZHANG, Anhua SHI, Zhefeng YU, Shichang LIANG, Jie HUANG. Transmission characteristics of typical band microwave in experiment⁃simulated plasma [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729476-729476. |
[12] | Yuemeng MA, Ming LIU, Ding YANG, Ming YANG, Mingang ZHANG, Yajie GE. Prescribed performance and anti⁃noise control of near space vehicle with thermal constraint [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729390-729390. |
[13] | Haoyu CHEN, Binwen WANG, Qiaozhi SONG, Xiaodong LI. Thermal flutter ground simulation test [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 227295-227295. |
[14] | Siyuan CHANG, Yao XIAO, Guangli LI, Zhongwei TIAN, Kaikai ZHANG, Kai CUI. Effect of wing dihedral and anhedral angles on hypersonic aerodynamic characteristics of high-pressure capturing wing configuration [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 127349-127349. |
[15] | Hongkang LIU, Jianqiang CHEN, Xinghao XIANG, Yatian ZHAO. Transition prediction for HIAD with different Reynolds numbers by improved k-ω-γtransition model [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 126868-126868. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341