收稿日期:
2023-04-03
修回日期:
2023-05-04
接受日期:
2023-05-12
出版日期:
2024-04-25
发布日期:
2023-05-15
通讯作者:
梁剑寒
E-mail:jhleon@vip.sina.com
基金资助:
Hongwei QIAO, Jianhan LIANG(), Lin ZHANG, Mingbo SUN, Yuqiao CHEN
Received:
2023-04-03
Revised:
2023-05-04
Accepted:
2023-05-12
Online:
2024-04-25
Published:
2023-05-15
Contact:
Jianhan LIANG
E-mail:jhleon@vip.sina.com
Supported by:
摘要:
概率密度函数方法能够精确封闭湍流/化学反应相互作用,在湍流燃烧数值模拟中得到了广泛应用。随着高超声速推进技术的不断发展,超燃冲压发动机内的超声速湍流燃烧为概率密度函数方法的应用带来了新的挑战。首先,综述了概率密度函数方法应用于超声速湍流燃烧的最新进展,概述了概率密度函数方法的基本理论、关键模型和求解框架;其次,介绍了超声速湍流燃烧对概率密度函数方法的理论、模型和数值求解方面的具体挑战和相关研究工作,包括考虑可压缩效应、高速源项模型修正、小尺度混合模型改进等;然后,综述了概率密度函数方法在超声速湍流燃烧中的应用情况;最后,对超声速燃烧中概率密度函数方法的应用前景和发展方向做出了展望。
中图分类号:
乔竑玮, 梁剑寒, 张林, 孙明波, 陈玉俏. 超声速燃烧中的概率密度函数方法研究进展[J]. 航空学报, 2024, 45(8): 28802-028802.
Hongwei QIAO, Jianhan LIANG, Lin ZHANG, Mingbo SUN, Yuqiao CHEN. Research progress of probability density function approach in supersonic combustion[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 28802-028802.
1 | SELEZNEV R K, SURZHIKOV S T, SHANG J S. A review of the scramjet experimental data base[J]. Progress in Aerospace Sciences, 2019, 106: 43-70. |
2 | 崔兴达. 超声速气流中低频燃烧振荡问题研究[D]. 长沙: 国防科学技术大学, 2014. |
CUI X D. Investigations on low frequency combustion oscillations in supersonic flow[D].Changsha: National University of Defense Technology, 2014 (in Chinese). | |
3 | CHEN C P, GAO T Y, LIANG J H. Separation induced low-frequency unsteadiness in a supersonic combustor with single-side expansion[J]. Physics of Fluids, 2019, 31(5): 056103. |
4 | 赵国焱. 超声速气流中火焰闪回诱发与火焰传播机制研究[D]. 长沙: 国防科技大学, 2019. |
ZHAO G Y. On the excitation of flame flashback and flame propagation mechanism in supersonic flow [D]. Changsha: National University of Defense Technology, 2019 (in Chinese). | |
5 | FRY R S. A century of ramjet propulsion technology evolution[J]. Journal of Propulsion and Power, 2004, 20(1): 27-58. |
6 | BARNES F W, SEGAL C. Cavity-based flameholding for chemically-reacting supersonic flows[J]. Progress in Aerospace Sciences, 2015, 76: 24-41. |
7 | SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD Vision 2030 Study: A path to revolutionary computational aerosciences: NASA/CR-2014-218178[R]. Washington, D.C.: NASA, 2014. |
8 | POTTURI A S, EDWARDS J R. Hybrid large-eddy/Reynolds-averaged Navier-Stokes simulations of flow through a model scramjet[J]. AIAA Journal, 2014, 52(7): 1417-1429. |
9 | MOULE Y, SABELNIKOV V, MURA A. Highly resolved numerical simulation of combustion in supersonic hydrogen-air coflowing jets[J]. Combustion and Flame, 2014, 161(10): 2647-2668. |
10 | PIERCE C D, MOIN P. Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion[J]. Journal of Fluid Mechanics, 2004, 504: 73-97. |
11 | FOX R O. Computational models for turbulent reacting flows[M]. Cambridge: Cambridge University Press, 2003. |
12 | POPE S B. Small scales, many species and the manifold challenges of turbulent combustion[J]. Proceedings of the Combustion Institute, 2013, 34(1): 1-31. |
13 | MENTER F R. Review of the shear-stress transport turbulence model experience from an industrial perspective[J]. International Journal of Computational Fluid Dynamics, 2009, 23(4): 305-316. |
14 | NONOMURA T, FUJII K. Characteristic finite-difference WENO scheme for multicomponent compressible fluid analysis: Overestimated quasi-conservative formulation maintaining equilibriums of velocity, pressure, and temperature[J]. Journal of Computational Physics, 2017, 340: 358-388. |
15 | HICKEL S, EGERER C P, LARSSON J. Subgrid-scale modeling for implicit large eddy simulation of compressible flows and shock-turbulence interaction[J]. Physics of Fluids, 2014, 26(10): 106101. |
16 | HAWORTH D C. Progress in probability density function methods for turbulent reacting flows[J]. Progress in Energy and Combustion Science, 2010, 36(2): 168-259. |
17 | 杨越, 游加平, 孙明波. 超声速燃烧数值模拟中的湍流与化学反应相互作用模型[J]. 航空学报, 2015, 36(1): 261-273. |
YANG Y, YOU J P, SUN M B. Modeling of turbulence-chemistry interactions in numerical simulations of supersonic combustion[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 261-273 (in Chinese). | |
18 | POPE S B. PDF methods for turbulent reactive flows[J]. Progress in Energy and Combustion Science, 1985, 11(2): 119-192. |
19 | HAWORTH D C, TAHRY S H EL. Probability density function approach for multidimensional turbulent flow calculations with application to in-cylinder flows in reciprocating engines[J]. AIAA Journal, 1991, 29: 208-218. |
20 | ZHANG L, LIANG J H, SUN M B, et al. An energy-consistency-preserving large eddy simulation-scalar filtered mass density function (LES-SFMDF) method for high-speed flows[J]. Combustion Theory and Modelling, 2018, 22(1): 1-37. |
21 | YALDIZLI M, MEHRAVARAN K, JABERI F A. Large-eddy simulations of turbulent methane jet flames with filtered mass density function[J]. International Journal of Heat and Mass Transfer, 2010, 53(11-12): 2551-2562. |
22 | GUAN Q D, LIANG J H, SUN M B, et al. Large eddy simulation of supersonic mixing layers using a compressible filtered mass density function method[J]. Aerospace Science and Technology, 2022, 124: 107425. |
23 | 黄立航, 朱旻明, 叶桃红. 改进密度耦合的稀疏拉格朗日FDF方法模拟Sandia火焰E[J]. 中国科学技术大学学报, 2020, 50(5): 589-595, 604. |
HUANG L H, ZHU M M, YE T H. Sparse-Lagrangian FDF simulation of Sandia flame E with modified density coupling[J]. Journal of University of Science and Technology of China, 2020, 50(5): 589-595, 604 (in Chinese). | |
24 | TANG Q, ZHAO W, BOCKELIE M, et al. Multi-environment probability density function method for modelling turbulent combustion using realistic chemical kinetics[J]. Combustion Theory and Modelling, 2007, 11(6): 889-907. |
25 | SCHWARTZENTRUBER T E, BOYD I D. Progress and future prospects for particle-based simulation of hypersonic flow[J]. Progress in Aerospace Sciences, 2015, 72: 66-79. |
26 | ROWINSKI D H, POPE S B. Computational study of lean premixed turbulent flames using RANSPDF and LESPDF methods[J]. Combustion Theory and Modelling, 2013, 17(4): 610-656. |
27 | YANG Y, WANG H F, POPE S B, et al. Large-eddy simulation/probability density function modeling of a non-premixed CO/H2 temporally evolving jet flame[J]. Proceedings of the Combustion Institute, 2013, 34(1): 1241-1249. |
28 | POPE S B. Mapping closures for turbulent mixing and reaction[J]. Theoretical and Computational Fluid Dynamics, 1991, 2(5): 255-270. |
29 | 关清帝. 一般曲线坐标系下拉格朗日PDF方法及其在超声速燃烧中的应用研究[D]. 长沙: 国防科技大学, 2022. |
GUAN Q D. A study of the Lagrangian PDF method in a general curvilinear coordinate system and its application to supersonic combustion[D]. Changsha: National University of Defense Technology, 2022 (in Chinese). | |
30 | 范周琴, 孙明波, 刘卫东. 湍流燃烧的概率密度函数输运方程模型研究[J]. 飞航导弹, 2010(5): 90-95. |
FAN Z Q, SUN M B, LIU W D. Study on transport equation model of probability density function for turbulent combustion[J]. Aerodynamic Missile Journal, 2010(5): 90-95 (in Chinese). | |
31 | 刘亚明, 柳朝晖, 贺铸, 等. 湍流被动标量研究的最新进展[J]. 力学进展, 2005, 35(4): 549-558. |
LIU Y M, LIU Z H, HE Z, et al. Recent progress in statistics of turbulent passive scalar[J]. Advances in Mechanics, 2005, 35(4): 549-558 (in Chinese). | |
32 | CELIS C, FIGUEIRA DA SILVA L F. Lagrangian mixing models for turbulent combustion: Review and prospects[J]. Flow, Turbulence and Combustion, 2015, 94(3): 643-689. |
33 | 任祝寅, 解青, 杨天威, 等. 输运概率密度函数中的小尺度标量混合建模[J]. 空气动力学学报, 2020, 38(3): 501-514. |
REN Z Y, XIE Q, YANG T W, et al. Micromixing models for transported PDF simulation of turbulent combustion[J]. Acta Aerodynamica Sinica, 2020, 38(3): 501-514 (in Chinese). | |
34 | GONZALEZ-JUEZ E D, KERSTEIN A R, RANJAN R, et al. Advances and challenges in modeling high-speed turbulent combustion in propulsion systems[J]. Progress in Energy and Combustion Science, 2017, 60: 26-67. |
35 | PANT T, JAIN U, WANG H F. Transported PDF modeling of compressible turbulent reactive flows by using the Eulerian Monte Carlo fields method[J]. Journal of Computational Physics, 2021, 425: 109899. |
36 | GIVI P. Model-free simulations of turbulent reactive flows[J]. Progress in Energy and Combustion Science, 1989, 15(1): 1-107. |
37 | BOGER M, VEYNANTE D, BOUGHANEM H, et al. Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion[J]. Symposium (International) on Combustion, 1998, 27(1): 917-925. |
38 | COLUCCI P J, JABERI F A, GIVI P, et al. Filtered density function for large eddy simulation of turbulent reacting flows[J]. Physics of Fluids, 1998, 10(2): 499-515. |
39 | JABERI F A, COLUCCI P J, JAMES S, et al. Filtered mass density function for large-eddy simulation of turbulent reacting flows[J]. Journal of Fluid Mechanics, 1999, 401: 85-121. |
40 | BORGHI R. Turbulent combustion modelling[J]. Progress in Energy and Combustion Science, 1988, 14(4): 245-292. |
41 | SUBRAMANIAM S, POPE S B. A mixing model for turbulent reactive flows based on Euclidean minimum spanning trees[J]. Combustion and Flame, 1998, 115(4): 487-514. |
42 | DOPAZO C. Relaxation of initial probability density functions in the turbulent convection of scalar fields[J]. Physics of Fluids, 1979, 22(1): 20-30. |
43 | DEVAUD C B, STANKOVIĆ I, MERCI B. Deterministic Multiple Mapping Conditioning (MMC) applied to a turbulent flame in Large Eddy Simulation (LES)[J]. Proceedings of the Combustion Institute, 2013, 34(1): 1213-1221. |
44 | WANDEL A P, LINDSTEDT R P. Hybrid multiple mapping conditioning modeling of local extinction[J]. Proceedings of the Combustion Institute, 2013, 34(1): 1365-1372. |
45 | MEYER D W, JENNY P. A mixing model for turbulent flows based on parameterized scalar profiles[J]. Physics of Fluids, 2006, 18(3): 35105. |
46 | MEYER D W. A new particle interaction mixing model for turbulent dispersion and turbulent reactive flows[J]. Physics of Fluids, 2010, 22(3): 35103. |
47 | CAI J, WANG D H, TONG C N, et al. Investigation of subgrid-scale mixing of mixture fraction and temperature in turbulent partially premixed flames[J]. Proceedings of the Combustion Institute, 2009, 32(1): 1517-1525. |
48 | WANG D H, TONG C N, BARLOW R S, et al. Experimental study of scalar filtered mass density function in turbulent partially premixed flames[J]. Proceedings of the Combustion Institute, 2007, 31(1): 1533-1541. |
49 | YU C K, BYKOV V, MAAS U. Coupling of simplified chemistry with mixing processes in PDF simulations of turbulent flames[J]. Proceedings of the Combustion Institute, 2019, 37(2): 2183-2190. |
50 | BYKOV V, GOL’DSHTEIN V, MAAS U. Simple global reduction technique based on decomposition approach[J]. Combustion Theory and Modelling, 2008, 12(2): 389-405. |
51 | 周华. 湍流预混燃烧的输运概率密度函数模拟研究[D]. 北京: 清华大学, 2017. |
ZHOU H. Transported probability density function simulations of turbulent premixed flames[D].Beijing: Tsinghua University, 2017 (in Chinese). | |
52 | BANAEIZADEH A, AFSHARI A, SCHOCK H, et al. Large-eddy simulations of turbulent flows in internal combustion engines[J]. International Journal of Heat and Mass Transfer, 2013, 60: 781-796. |
53 | ESMAEILI M, AFSHARI A, JABERI F A. Turbulent mixing in non-isothermal jet in crossflow[J]. International Journal of Heat and Mass Transfer, 2015, 89: 1239-1257. |
54 | WANG H F, POPE S B. Large eddy simulation/probability density function modeling of a turbulent CH4/H2/N2 jet flame[J]. Proceedings of the Combustion Institute, 2011, 33(1): 1319-1330. |
55 | KOMPERDA J, GHIASI Z, LI D R, et al. A hybrid discontinuous spectral element method and filtered mass density function solver for turbulent reacting flows[J]. Numerical Heat Transfer, Part B: Fundamentals, 2020, 78(1): 1-29. |
56 | TANG Q, XU J, POPE S B. Probability density function calculations of local extinction and no production in piloted-jet turbulent methane/air flames[J]. Proceedings of the Combustion Institute, 2000, 28(1): 133-139. |
57 | SHEIKHI M R H, GIVI P, POPE S B. Velocity-scalar filtered mass density function for large eddy simulation of turbulent reacting flows[J]. Physics of Fluids, 2007, 19(9): 95106. |
58 | LINDSTEDT R P, LOULOUDI S A, VÁOS E M. Joint scalar probability density function modeling of pollutant formation in piloted turbulent jet diffusion flames with comprehensive chemistry[J]. Proceedings of the Combustion Institute, 2000, 28(1): 149-156. |
59 | 王海峰, 陈义良, 刘明侯. 湍流扩散燃烧的数值研究—PDF方法和火焰面模型的性能比较[J]. 工程热物理学报, 2005, 26(S1): 241-244. |
WANG H F, CHEN Y L, LIU M H. Numerical investigation of turbulent nonpremixed combustion: Performance of PDF method and flamelet models [J]. Journal of Engineering Thermophysics, 2005, 26(S1): 241-244 (in Chinese). | |
60 | 黄庆, 朱旻明, 叶桃红, 等. PDF方法模拟钝体驻定的湍流扩散火焰[J]. 计算物理, 2008, 25(6): 733-743. |
HUANG Q, ZHU M M, YE T H, et al. PDF simulation of bluff-body stabilized turbulent non-premixed flame[J]. Chinese Journal of Computational Physics, 2008, 25(6): 733-743 (in Chinese). | |
61 | SHARMA E, DE S, CLEARY M J. LES of a lifted methanol spray flame series using the sparse Lagrangian MMC approach[J]. Proceedings of the Combustion Institute, 2021, 38(2): 3399-3407. |
62 | CARRARA M D, DESJARDIN P E. A filtered mass density function approach for modeling separated two-phase flows for LES I: Mathematical formulation[J]. International Journal of Multiphase Flow, 2006, 32(3): 365-384. |
63 | LI Z, BANAEIZADEH A, JABERI F A. Two-phase filtered mass density function for LES of turbulent reacting flows[J]. Journal of Fluid Mechanics, 2014, 760: 243-277. |
64 | GERLINGER P. Lagrangian transported MDF methods for compressible high speed flows[J]. Journal of Computational Physics, 2017, 339: 68-95. |
65 | TURKERI H, ZHAO X Y, MURADOGLU M. Large eddy simulation/probability density function modeling of turbulent swirling stratified flame series[J]. Physics of Fluids, 2021, 33(2): 025117. |
66 | VALIDI A, SCHOCK H, JABERI F. Turbulent jet ignition assisted combustion in a rapid compression machine[J]. Combustion and Flame, 2017, 186: 65-82. |
67 | MURADOGLU M, LIU K, POPE S B. PDF modeling of a bluff-body stabilized turbulent flame[J]. Combustion and Flame, 2003, 132(1-2): 115-137. |
68 | WANG L P, HAWKES E R, CHEN J H. Flame edge statistics in turbulent combustion[J]. Proceedings of the Combustion Institute, 2011, 33(1): 1439-1446. |
69 | TIRUNAGARI R R, POPE S B. LES/PDF for premixed combustion in the DNS limit[J]. Combustion Theory and Modelling, 2016, 20(5): 834-865. |
70 | TIRUNAGARI R R, POPE S B. Characterization of extinction/reignition events in turbulent premixed counterflow flames using strain-rate analysis[J]. Proceedings of the Combustion Institute, 2017, 36(2): 1919-1927. |
71 | STEINBERG A M, HAMLINGTON P E, ZHAO X Y. Structure and dynamics of highly turbulent premixed combustion[J]. Progress in Energy and Combustion Science, 2021, 85: 100900. |
72 | DRISCOLL J F, CHEN J H, SKIBA A W, et al. Premixed flames subjected to extreme turbulence: Some questions and recent answers[J]. Progress in Energy and Combustion Science, 2020, 76: 100802. |
73 | LIU Q L, BACCARELLA D, LEE T H. Review of combustion stabilization for hypersonic airbreathing propulsion[J]. Progress in Aerospace Sciences, 2020, 119: 100636. |
74 | ZEMAN O. On the decay of compressible isotropic turbulence[J]. Physics of Fluids A: Fluid Dynamics, 1991, 3(5): 951-955. |
75 | DELARUE B J, POPE S B. Calculations of subsonic and supersonic turbulent reacting mixing layers using probability density function methods[J]. Physics of Fluids, 1998, 10(2): 487-498. |
76 | MÖBUS H, GERLINGER P, BRÜGGEMANN D. Scalar and joint scalar-velocity-frequency Monte Carlo PDF simulation of supersonic combustion[J]. Combustion and Flame, 2003, 132(1-2): 3-24. |
77 | HSU A T, TSAI Y L P, RAJU M S. Probability density function approach for compressible turbulent reacting flows[J]. AIAA Journal, 1994, 32(7): 1407-1415. |
78 | BANAEIZADEH A, LI Z R, JABERI F A. Compressible scalar filtered mass density function model for high-speed turbulent flows[J]. AIAA Journal, 2011, 49(10): 2130-2143. |
79 | NIK M, GIVI P, MADNIA C, et al. EPVS-FMDF for LES of high-speed turbulent flows[C]∥ Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012. |
80 | 陈志辉, 徐旭. 用简化PDF方法分析温度脉动在超声速湍流燃烧中的作用[J]. 燃烧科学与技术, 2008, 14(5): 468-473. |
CHEN Z H, XU X. Examine the effect of temperature fluctuation on supersonic combustion by assumed PDF approach[J]. Journal of Combustion Science and Technology, 2008, 14(5): 468-473 (in Chinese). | |
81 | KOO H, DONDE P, RAMAN V. LES-based Eulerian PDF approach for the simulation of scramjet combustors[J]. Proceedings of the Combustion Institute, 2013, 34(2): 2093-2100. |
82 | DONDE P, KOO H, RAMAN V. A multivariate quadrature based moment method for LES based modeling of supersonic combustion[J]. Journal of Computational Physics, 2012, 231(17): 5805-5821. |
83 | IRANNEJAD A, BANAEIZADEH A, JABERI F. Large eddy simulation of turbulent spray combustion[J]. Combustion and Flame, 2015, 162(2): 431-450. |
84 | ANSARI N, STRAKEY P A, GOLDIN G M, et al. Filtered density function simulation of a realistic swirled combustor[J]. Proceedings of the Combustion Institute, 2015, 35(2): 1433-1442. |
85 | DE ALMEIDA Y P, NAVARRO-MARTINEZ S. Large Eddy Simulation of a supersonic lifted flame using the Eulerian stochastic fields method[J]. Proceedings of the Combustion Institute, 2019, 37(3): 3693-3701. |
86 | DE ALMEIDA Y P, NAVARRO-MARTINEZ S. Large eddy simulation of supersonic combustion using the Eulerian stochastic fields method[J]. Flow, Turbulence and Combustion, 2019, 103(4): 943-962. |
87 | 张林. 高速湍流燃烧LES-TPDF方法及其应用研究[D]. 长沙: 国防科技大学, 2018. |
ZHANG L. LES-TPDF methods and their applications for high-speed turbulent combustion[D].Changsha: National University of Defense Technology, 2018 (in Chinese). | |
88 | BELJADID A, LEFLOCH P G, MISHRA S, et al. Schemes with well-controlled dissipation. Hyperbolic systems in nonconservative form[J]. Communications in Computational Physics, 2017, 21(4): 913-946. |
89 | ZHANG L, LIANG J H, SUN M B, et al. A conservative and consistent scalar filtered mass density function method for supersonic flows[J]. Physics of Fluids, 2021, 33(2): 26101. |
90 | DE ALMEIDA Y P, NAVARRO-MARTINEZ S. Joint-velocity scalar energy probability density function method for large eddy simulations of compressible flow[J]. Physics of Fluids, 2021, 33(3): 35155. |
91 | CAO R R, WANG H F, POPE S B. The effect of mixing models in PDF calculations of piloted jet flames[J]. Proceedings of the Combustion Institute, 2007, 31(1): 1543-1550. |
92 | CHEN W W, LIANG J H, ZHANG L, et al. A numerical investigation of mixing models in LES-FMDF for compressible reactive flows[J]. Energies, 2021, 14(16): 5180. |
93 | WANG H F, PANT T, ZHANG P. LES/PDF modeling of turbulent premixed flames with locally enhanced mixing by reaction[J]. Flow, Turbulence and Combustion, 2018, 100(1): 147-175. |
94 | 关清帝, 梁剑寒, 张林, 等. 一般曲线坐标系下概率密度函数方法及其在超声速燃烧中的应用[J]. 航空学报, 2023, 44(4): 126677. |
GUAN Q D, LIANG J H, ZHANG L, et al. Probability density function method in general curvilinear coordinate system and its application in supersonic combustion[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(4): 126677 (in Chinese). | |
95 | INKARBEKOV M, AITZHAN A, KALTAYEV A, et al. A GPU-accelerated filtered density function simulator of turbulent reacting flows[J]. International Journal of Computational Fluid Dynamics, 2020, 34(6): 381-396. |
96 | HUANG W, DU Z B, YAN L, et al. Flame propagation and stabilization in dual-mode scramjet combustors: A survey[J]. Progress in Aerospace Sciences, 2018, 101: 13-30. |
97 | 赵国焱, 孙明波, 吴锦水. 基于不同PDF的超声速扩散燃烧火焰面模型对比[J]. 推进技术, 2015, 36(2): 232-237. |
ZHAO G Y, SUN M B, WU J S. Comparison of supersonic diffusion combustion flamelet model based on different PDF[J]. Journal of Propulsion Technology, 2015, 36(2): 232-237 (in Chinese). | |
98 | 丁海昕, 钟诚文. 不同PDF模型在超燃冲压发动机数值模拟中的应用[J]. 航空工程进展, 2019, 10(5): 698-706. |
DING H X, ZHONG C W. Application of different PDF models for numerical simulation of scramjet[J]. Advances in Aeronautical Science and Engineering, 2019, 10(5): 698-706 (in Chinese). | |
99 | IRANNEJAD A, JABERI F A, KOMPERDA J, et al. Large eddy simulation of supersonic turbulent combustion with FMDF[C]∥ Proceedings of the 52nd Aerospace Sciences Meeting. Reston: AIAA, 2014. |
100 | KOMPERDA J, GHIASI Z, LI D R, et al. Simulation of the cold flow in a ramp-cavity combustor using a DSEM-LES/FMDF hybrid scheme[C]∥ Proceedings of the 54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016. |
101 | 王方, 王煜栋, 姜胜利, 等. AECSC-JASMIN湍流燃烧仿真软件研发和检验[J]. 航空学报, 2021, 42(12): 625003. |
WANG F, WANG Y D, JIANG S L, et al. Development and testing of AECSC-JASMIN turbulent combustion simulation software[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 625003 (in Chinese). | |
102 | 王方, 窦力, 魏观溢, 等. 基于PDF-LES模型的凹腔支板火焰稳定器模拟[J]. 工程热物理学报, 2021, 42(3): 758-767. |
WANG F, DOU L, WEI G Y, et al. The simulation of cavity flameholder by PDF-LES method[J]. Journal of Engineering Thermophysics, 2021, 42(3): 758-767 (in Chinese). | |
103 | GIVI P. Filtered density function for subgrid scale modeling of turbulent combustion[J]. AIAA Journal, 2006, 44(1): 16-23. |
[1] | 刘小勇, 王明福, 刘建文, 任鑫, 张轩. 超燃冲压发动机研究回顾与展望[J]. 航空学报, 2024, 45(5): 529878-529878. |
[2] | 纪鉴恒, 蔡尊, 王泰宇, 孙明波, 王振国. 宽速域超燃冲压发动机流动燃烧过程研究进展[J]. 航空学报, 2024, 45(3): 28696-028696. |
[3] | 张育鸣, 戴玉婷, 黄广靖, 杨超, 蒋树杰. 柔性变形后缘翼型阵风减缓及气动噪声分析[J]. 航空学报, 2024, 45(10): 129219-129219. |
[4] | 张子佩, 赵钟, 陈坚强, 刘健, 邓小兵. 风雷软件LES开发设计与验证[J]. 航空学报, 2023, 44(6): 127171-127171. |
[5] | 赵翔, 夏智勋, 方传波, 马立坤, 李潮隆, 段一凡. 固体火箭超燃冲压发动机理论性能分析[J]. 航空学报, 2023, 44(5): 126971-126971. |
[6] | 关清帝, 梁剑寒, 张林, 陈文武, 陈玉俏. 一般曲线坐标系下概率密度函数方法及其在超声速燃烧中的应用[J]. 航空学报, 2023, 44(4): 126677-126677. |
[7] | 宋家辉, 许爱国, 苗龙, 廖煜淦, 梁福文, 田丰, 聂明卿, 王宁飞. 激波/平板层流边界层干扰熵增特性[J]. 航空学报, 2023, 44(21): 528520-528520. |
[8] | 施方成, 高振勋, 田雨岩, 蒋崇文, 王田天, 李椿萱. 超声速理想膨胀喷流噪声的大涡模拟[J]. 航空学报, 2023, 44(2): 626266-626266. |
[9] | 孙明波, 朱家健, 罗天罡, 李沁远, 田轶夫, 万明罡, 孙永超. 非稳态超声速燃烧电激励调控技术研究进展[J]. 航空学报, 2023, 44(15): 528787-528787. |
[10] | 夏智勋, 冯运超, 马立坤, 陈斌斌, 李潮隆, 杨鹏年, 刘延东, 屈影, 赵康淳, 赵李北, 任鹏浩. 固体火箭超燃冲压发动机燃烧技术研究进展[J]. 航空学报, 2023, 44(15): 528793-528793. |
[11] | 赵宾宾, 张恒, 李杰. 翼型结冰状态复杂分离流动数值模拟综述[J]. 航空学报, 2023, 44(1): 627211-627211. |
[12] | 张钧铎, 左青海, 林孟达, 黄伟希, 潘卫军, 崔桂香. ARJ21飞机尾涡在侧风条件下的近地演化数值模拟[J]. 航空学报, 2022, 43(5): 125043-125043. |
[13] | 李潮隆, 夏智勋, 马立坤, 赵翔, 罗振兵, 段一凡. 固体火箭超燃冲压发动机性能试验[J]. 航空学报, 2022, 43(12): 126075-126075. |
[14] | 谢晨月, 王建春, 万敏平, 陈十一. 基于人工神经网络的可压缩湍流大涡模拟模型[J]. 航空学报, 2021, 42(9): 625723-625723. |
[15] | 王萍, 郑晓静. 风沙两相流数值模拟研究进展[J]. 航空学报, 2021, 42(9): 625767-625767. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学