| 1 |
MA Y, GUO M M, TIAN Y, et al. Recent advances and prospects in hypersonic inlet design and intelligent optimization[J]. Aerospace Science and Technology, 2024, 146: 108953.
|
| 2 |
CHANG J T, ZHANG J L, BAO W, et al. Research progress on strut-equipped supersonic combustors for scramjet application[J]. Progress in Aerospace Sciences, 2018, 103: 1-30.
|
| 3 |
ZHAO D. Ramjets/scramjets aerodynamics: A progress review[J]. Progress in Aerospace Sciences, 2023, 143: 100958.
|
| 4 |
刘小勇, 王明福, 刘建文, 等. 超燃冲压发动机研究回顾与展望[J]. 航空学报, 2024, 45(5): 529878.
|
|
LIU X Y, WANG M F, LIU J W, et al. Review and prospect of research on scramjet[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529878 (in Chinese).
|
| 5 |
LACOSTE D A. Flames with plasmas[J]. Proceedings of the Combustion Institute, 2023, 39(4): 5405-5428.
|
| 6 |
JU Y G, SUN W T. Plasma assisted combustion: Dynamics and chemistry[J]. Progress in Energy and Combustion Science, 2015, 48: 21-83.
|
| 7 |
吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2): 381-405.
|
|
WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 381-405 (in Chinese).
|
| 8 |
孙明波, 朱家健, 罗天罡, 等. 非稳态超声速燃烧电激励调控技术研究进展[J]. 航空学报, 2023, 44(15): 528787.
|
|
SUN M B, ZHU J J, LUO T G, et al. Research progress of unsteady supersonic combustion controlled by electric excitation technology[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528787 (in Chinese).
|
| 9 |
MIAO H F, ZHANG Z B, HE Y Y, et al. Ignition enhancement of liquid kerosene by a novel high-energy spark igniter in scramjet combustor at Mach 4 flight condition[J]. Aerospace Science and Technology, 2023, 139: 108397.
|
| 10 |
LI J, TANG J F, ZHANG H R, et al. Dual-frequency excited plasma enhanced ignition in a supersonic combustion chamber[J]. Aerospace Science and Technology, 2022, 129: 107849.
|
| 11 |
LI J, TANG J F, ZHANG H R, et al. Dual-frequency plasma promoting flameholding in a supersonic combustion chamber[J]. Aerospace Science and Technology, 2022, 127: 107676.
|
| 12 |
LI F, YU X L, TONG Y G, et al. Plasma-assisted ignition for a kerosene fueled scramjet at Mach 1.8[J]. Aerospace Science and Technology, 2013, 28(1): 72-78.
|
| 13 |
孟宇, 顾洪斌, 孙文明, 等. 微波增强滑移电弧等离子体辅助超声速燃烧[J]. 航空学报, 2020, 41(2): 123345.
|
|
MENG Y, GU H B, SUN W M, et al. Microwave enhanced gliding arc plasma assisted supersonic combustion[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 123345 (in Chinese).
|
| 14 |
孟宇, 顾洪斌, 张新宇. 微波对超声速燃烧火焰结构的影响[J]. 航空学报, 2019, 40(12): 83-91.
|
|
MENG Y, GU H B, ZHANG X Y. Influence of microwave on structure of supersonic combustion flame[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12): 83-91 (in Chinese).
|
| 15 |
HAMMACK S D, OMBRELLO T M. Spatio-temporal evolution of cavity ignition in supersonic flow[J]. Proceedings of the Combustion Institute, 2021, 38(3): 3845-3852.
|
| 16 |
OMBRELLO T M, HAMMACK S D, CARTER C D, et al. Scramjet cavity ignition using nanosecond-pulsed high-frequency discharges[J]. Combustion and Flame, 2024, 262: 113335.
|
| 17 |
LEONOV S B, ELLIOTT S, CARTER C, et al. Modes of plasma-stabilized combustion in cavity-based M=2 configuration[J]. Experimental Thermal and Fluid Science, 2021, 124: 110355.
|
| 18 |
LI Q Y, ZHU J J, TIAN Y F, et al. Investigation of ignition and flame propagation in an axisymmetric supersonic combustor with laser-induced plasma[J]. Physics of Fluids, 2023, 35(12): 125133.
|
| 19 |
TIAN Y F, CAI Z, SUN M B, et al. Ignition characteristics of scramjet combustor with laser ablation and laser-induced breakdown[J]. Journal of Propulsion and Power, 2022, 38(5): 799-808.
|
| 20 |
AN B, YANG L C, WANG Z G, et al. Characteristics of laser ignition and spark discharge ignition in a cavity-based supersonic combustor[J]. Combustion and Flame, 2020, 212: 177-188.
|
| 21 |
SUN J G, TANG Y, LI S Q. Plasma-assisted stabilization of premixed swirl flames by gliding arc discharges[J]. Proceedings of the Combustion Institute, 2021, 38(4): 6733-6741.
|
| 22 |
TANG Y, SUN J G, SHI B L, et al. Extension of flammability and stability limits of swirling premixed flames by AC powered gliding arc discharges[J]. Combustion and Flame, 2021, 231: 111483.
|
| 23 |
LIN B X, WU Y, ZHU Y F, et al. Experimental investigation of gliding arc plasma fuel injector for ignition and extinction performance improvement[J]. Applied Energy, 2019, 235: 1017-1026.
|
| 24 |
JIA M, ZHANG Z B, CUI W, et al. Experimental investigation of a gliding discharge plasma jet igniter[J]. Chinese Journal of Aeronautics, 2022, 35(6): 116-124.
|
| 25 |
HE L M, CHEN Y, DENG J, et al. Experimental study of rotating gliding arc discharge plasma-assisted combustion in an aero-engine combustion chamber[J]. Chinese Journal of Aeronautics, 2019, 32(2): 337-346.
|
| 26 |
ZHANG L, ZHANG D C, YU J L, et al. Experimental study on the improvement of spray characteristics of aero-engines using gliding arc plasma[J]. Plasma Science and Technology, 2023, 25(3): 035502.
|
| 27 |
OMBRELLO T, JU Y G, FRIDMAN A. Kinetic ignition enhancement of diffusion flames by nonequilibrium magnetic gliding arc plasma[J]. AIAA Journal, 2008, 46(10): 2424-2433.
|
| 28 |
OMBRELLO T, QIN X, JU Y G, et al. Combustion enhancement via stabilized piecewise nonequilibrium gliding arc plasma discharge[J]. AIAA Journal, 2006, 44(1): 142-150.
|
| 29 |
GAO J L, KONG C D, ZHU J J, et al. Visualization of instantaneous structure and dynamics of large-scale turbulent flames stabilized by a gliding arc discharge[J]. Proceedings of the Combustion Institute, 2019, 37(4): 5629-5636.
|
| 30 |
FENG R, HUANG Y H, ZHU J J, et al. Ignition and combustion enhancement in a cavity-based supersonic combustor by a multi-channel gliding arc plasma[J]. Experimental Thermal and Fluid Science, 2021, 120: 110248.
|
| 31 |
FENG R, WANG Z G, SUN M B, et al. Multi-channel gliding arc plasma-assisted ignition in a kerosene-fueled model scramjet engine[J]. Aerospace Science and Technology, 2022, 126: 107606.
|
| 32 |
FENG R, ZHU J J, WANG Z G, et al. Ignition modes of a cavity-based scramjet combustor by a gliding arc plasma[J]. Energy, 2021, 214: 118875.
|
| 33 |
LUO T G, ZHU J J, SUN M B, et al. MCGA-assisted ignition process and flame propagation of a scramjet at Mach 2.0[J]. Chinese Journal of Aeronautics, 2023, 36(7): 378-387.
|
| 34 |
TIAN Y F, ZHU J J, SUN M B, et al. Enhancement of blowout limit in a Mach 2.92 cavity-based scramjet combustor by a gliding arc discharge[J]. Proceedings of the Combustion Institute, 2023, 39(4): 5697-5705.
|
| 35 |
FENG R, ZHU J J, WANG Z G, et al. Suppression of combustion mode transitions in a hydrogen-fueled scramjet combustor by a multi-channel gliding arc plasma[J]. Combustion and Flame, 2022, 237: 111843.
|
| 36 |
ZHU J J, GAO J L, EHN A, et al. Spatiotemporally resolved characteristics of a gliding arc discharge in a turbulent air flow at atmospheric pressure[J]. Physics of Plasmas, 2017, 24(1): 013514.
|