| [1] |
BERTIN J J, CUMMINGS R M. Fifty years of hypersonics: Where we’ve been, where we’re going[J]. Progress in Aerospace Sciences, 2003, 39(6): 511-536.
|
| [2] |
SUN D A, CAI W Z, LI C Y, et al. Experimental study on atomization characteristics of high-energy-density fuels using a fuel slinger[J]. Energy, 2021, 234: 121222.
|
| [3] |
靳雨树, 徐旭, 杨庆春. 含能碳氢燃料燃烧特性及发动机应用研究进展[J]. 航空学报, 2023, 44(5): 026690.
|
|
JIN Y S, XU X, YANG Q C. Research progress in combustion characteristics and engine applications of energetic hydrocarbon fuels[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(5): 026690 (in Chinese).
|
| [4] |
李嘉航, 石保禄, 赵马杰, 等. 高马赫数飞行条件下超燃冲压发动机燃烧组织方案数值模拟[J]. 火箭推进, 2023, 49(5): 1-12.
|
|
LI J H, SHI B L, ZHAO M J, et al. Numerical simulation on combustion organization scheme of scramjet at high Mach number[J]. Journal of Rocket Propulsion, 2023, 49(5): 1-12 (in Chinese).
|
| [5] |
WANG X, YANG Y X, LIU Y Q, et al. Thermodynamic analysis of a high Mach number scramjet engine with secondary combustion for thrust enhancement[J]. Thermal Science and Engineering Progress, 2024, 47: 102275.
|
| [6] |
陈军, 白菡尘, 万冰, 等. 双模态冲压发动机: 从宽域性能优化到模态设计[J]. 航空学报, 2024, 45(11): 529781.
|
|
CHEN J, BAI H C, WAN B, et al. Dual-mode scramjet: From performance optimization to mode-design[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(11): 529781 (in Chinese).
|
| [7] |
JIN Y S, XU X, YANG Q C, et al. Combustion behavior of hydrocarbon/boron gel-fueled scramjet[J]. AIAA Journal, 2022, 60(6): 3834-3843.
|
| [8] |
JIN Y S, XU X, WANG X, et al. Propulsive and combustion behavior of hydrocarbon fuels containing boron nanoparticles in a liquid rocket combustor[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2022, 236(12): 2580-2591.
|
| [9] |
BRACONNIER A, GALLIER S, HALTER F, et al. Aluminum combustion in CO2-CO-N2 mixtures[J]. Proceedings of the Combustion Institute, 2021, 38(3): 4355-4363.
|
| [10] |
LIM J. Burning and ignition characteristics of single aluminum and magnesium particle[C]∥AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2010: 6676.
|
| [11] |
LEGRAND, MARION, CHAUVEAU, et al. Ignition and combustion of levitated magnesium and aluminum particles in carbon dioxide[J]. Combustion Science and Technology, 2001, 165(1): 151-174.
|
| [12] |
TANG Y, DONG W, ZOU X R, et al. Ignition and combustion of a dense powder jet of micron-sized aluminum particles in hot gas[J]. Proceedings of the Combustion Institute, 2023, 39(3): 3625-3636.
|
| [13] |
ZHANG J R, XIA Z X, MA L K, et al. Experimental study on aluminum particles combustion in a turbulent jet[J]. Energy, 2021, 214: 118889.
|
| [14] |
FENG Y C, MA L K, XIA Z X, et al. Ignition and combustion characteristics of single gas-atomized Al-Mg alloy particles in oxidizing gas flow[J]. Energy, 2020, 196: 117036.
|
| [15] |
WANG X, BU Y P, XU X, et al. Effect of mixing section configurations on combustion efficiency of Mg-CO2 Martian ramjet[J]. Chinese Journal of Aeronautics, 2023, 36(4): 165-173.
|
| [16] |
WANG X, BU Y P, XU X, et al. Experimental investigation on the thrust regulation of a Mg-CO2 Martian ramjet[J]. Acta Astronautica, 2022, 197: 191-199.
|
| [17] |
LI M Z, HU C B, WANG Z Q, et al. Application and performance estimation of Mg/CO2 engine on Mars[J]. Acta Astronautica, 2022, 192: 314-327.
|
| [18] |
XU W, YANG Z L, WU Y K, et al. Influence of inlet structure on combustion flow structure in magnesium powder fueled water ramjet engine[J]. International Journal of Turbo & Jet-Engines, 2024, 41(3): 675-688.
|
| [19] |
HUANG L Y, ZHANG W H, XIA Z X, et al. Experimental study on ignition process of a magnesium-based water ramjet engine[J]. Journal of Propulsion and Power, 2014, 30(3): 857-862.
|
| [20] |
LI C L, CAI W G, XIA Z X, et al. Combustion enhancement of boron-containing fuel-rich mixture by steam reforming in a supersonic flow[J]. Combustion and Flame, 2024, 263: 113418.
|
| [21] |
冮强, 王辽, 郭金鑫, 等. 基于总温测量的超燃冲压发动机燃烧效率研究[J]. 实验流体力学, 2012, 26(4): 1-5.
|
|
GANG Q, WANG L, GUO J X, et al. Scramjet combustion efficiency studies based on the total temperature measurement[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(4): 1-5 (in Chinese).
|
| [22] |
朱小飞, 胡春波, 胡加明, 等. 氧化剂气量配比对Mg/CO2发动机性能影响实验[J]. 航空动力学报, 2019, 34(2): 479-485.
|
|
ZHU X F, HU C B, HU J M, et al. Experiments on influence of oxygen gas intake plan on performance of Mg/CO2 engine[J]. Journal of Aerospace Power, 2019, 34(2): 479-485 (in Chinese).
|
| [23] |
姚亮, 胡春波, 肖虎亮, 等. Mg粉/CO2粉末火箭发动机点火试验研究[J]. 固体火箭技术, 2011, 34(4): 440-442, 447.
|
|
YAO L, HU C B, XIAO H L, et al. Firing test study on the Mg/CO2 powdered rocket motor[J]. Journal of Solid Rocket Technology, 2011, 34(4): 440-442, 447 (in Chinese).
|
| [24] |
LI C, HU C B, XIN X, et al. Experimental study on the operation characteristics of aluminum powder fueled ramjet[J]. Acta Astronautica, 2016, 129: 74-81.
|
| [25] |
罗世彬. 高超声速飞行器机体/发动机一体化设计[M]. 北京: 科学出版社, 2018: 109-110.
|
|
LUO S B. Integrated design of hypersonic vehicle body/engine[M]. Beijing: Science Press, 2018: 109-110 (in Chinese).
|